(本小題滿(mǎn)分12分)某投資公司投資甲、乙兩個(gè)項(xiàng)目所獲得的利潤(rùn)分別是P(億
元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式P=,Q=t.今該公司將5
億元投資這兩個(gè)項(xiàng)目,其中對(duì)甲項(xiàng)目投資x(億元),投資這兩個(gè)項(xiàng)目所獲得的總利潤(rùn)為y(億
元).求:(1)y關(guān)于x的函數(shù)表達(dá)式;
(2)總利潤(rùn)的最大值.
解:(1)根據(jù)題意,得y=+(5-x),x∈[0,5].
(2)令t=,t∈[0,],則x=,
y=-+t+=-(t-2)2+.
因?yàn)?∈[0,],所以當(dāng)=2,即x=時(shí),
y最大值=.所以總利潤(rùn)的最大值是億元.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分13分)
函數(shù).
(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)的近似值(誤差不超過(guò));(參考數(shù)據(jù),,)
(2)當(dāng)時(shí),若關(guān)于的不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)若函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間。
(2)求在區(qū)間[-3,4]上的值域
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的單調(diào)減區(qū)間為(0,4).
(1)求k的值;
(2)對(duì)任意的t∈[-1,1],關(guān)于x的方程2x2+5x+a=f(t)總有實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)已知函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若,在(1,2)上為單調(diào)遞
減函數(shù)。求實(shí)數(shù)a的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為y=3x+1,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;[來(lái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
函數(shù)f(x)=2sinxcosx是( )
A.最小正周期為2π的奇函數(shù) | B.最小正周期為2π的偶函數(shù) |
C.最小正周期為π的奇函數(shù) | D.最小正周期為π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn),且在內(nèi)
單調(diào)遞減,在上單調(diào)遞增.
(1)求的解析式;
(2)若對(duì)于任意的,不等式恒成立,試問(wèn)
這樣的是否存在.若存在,請(qǐng)求出的范圍,若不存在,說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com