求下列標準方程(8分)
(1)橢圓的兩個焦點坐標分別為(0,2),(0,-2),且點P,)在橢圓上.
(2)橢圓長軸是短軸的3倍,且過點A(4,0).
(3)雙曲線經(jīng)過點(-3,2),且一條漸近線為y=x
(4)雙曲線離心率為,且過點(4,).
(1)
(2)
(3)
(4)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知拋物線
(1)設是C1的任意兩條互相垂直的切線,并設,證明:點M的縱坐標為定值;
(2)在C1上是否存在點P,使得C1在點P處切線與C2相交于兩點A、B,且AB的中垂線恰為C1的切線?若存在,求出點P的坐標;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題15分)已知拋物線,過點的直線交拋物線兩點,且
(1)求拋物線的方程;
(2)過點軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
在直角坐標系中,動點P到兩定點,的距離之和等于4,設動點P的軌跡為,過點的直線與交于A,B兩點.
(1)寫出的方程;
(2)設d為A、B兩點間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,O為坐標原點,直線x軸于點C, ,動點到直線的距離是它到點D的距離的2倍 
(I)求點的軌跡方程;
(II)設點K為點的軌跡與x軸正半軸的交點,直線交點的軌跡于兩點(與點K均不重合),且滿足 求直線EF在X軸上的截距;
(Ⅲ)在(II)的條件下,動點滿足,求直線的斜率的取值范圍 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一坐標系中,方程a2x2+b2y2=1與ax+by2=0(ab>0)的曲線大致是      (   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左焦點為,左準線為,點線段交橢圓于點,若,則_____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓的方程是,經(jīng)過圓上一點的切線方程為,類比上述方法可以得到橢圓類似的性質(zhì)為________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,定義點之間的“直角距離”為。若到點的“直角距離”相等,其中實數(shù)滿足,則所有滿足條件的點的軌跡的長度之和為

查看答案和解析>>

同步練習冊答案