求下列標準方程(8分)
(1)橢圓的兩個焦點坐標分別為(0,2),(0,-2),且點
P(
,
)在橢圓上.
(2)橢圓長軸是
短軸的3倍,且過點A(4,0).
(3)雙曲線經(jīng)過點(-3,2),且一條漸近線為
y=
x.
(4)雙曲線離心率為
,且過點(4,
).
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)已知
拋物線
(1)設
是C
1的任意兩條互相垂直的切線,并設
,證明
:點M的縱坐標為定值;
(2)在C
1上是否存在點P,使得C
1在點P處切線與C
2相交于兩點A、B,且AB的中垂線恰為C
1的切線?若存在,求出點P的坐標;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題15分)已知拋物線
,過點
的直線
交拋物線
于
兩點,且
.
(1)求拋物線
的方程;
(2)過點
作
軸的平行線與直線
相交于點
,若
是等腰三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共12分)
在直角坐標系
中,動點P到兩定點
,
的距離之和等于4,設動點P的軌跡為
,過點
的直線與
交于A,B兩點.
(1)寫出
的方程;
(2)設d為A、B兩點間的距離,d是否存在最大值、最小值;若存在,求出d的最大值、最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在直角坐標系中,
O為坐標原點,直線
⊥
x軸于點C,
,
,動點
到直線
的距離是它到點D的距離的2倍
(I)求點
的軌跡方程;
(II)設點K為點
的軌跡與
x軸正半軸的交點,直線
交點
的軌跡于
兩點(
與點K均不重合),且滿足
求直線EF在X軸上的截距;
(Ⅲ)在(II)的條件下,動點
滿足
,求直線
的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在同一坐標系中,方程
a2x2+
b2y2=1與
ax+
by2=0(
a>
b>0)的曲線大致是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓
的左焦點為
,左準線為
,點
線段
交橢圓
于點
,若
,則
_____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知圓的方程是
,經(jīng)過圓上一點
的切線方程為
,類比上述方法可以得到橢圓
類似的性質(zhì)為________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系中,定義點
之間的“直角距離”為
。若
到點
的“直角距離”相等,其中實數(shù)
滿足
,則所有滿足條件的點
的軌跡的長度之和為
查看答案和解析>>