【題目】已知拋物線Cx2=4y的焦點(diǎn)為F,過(guò)點(diǎn)P-2,2)的直線l與拋物線C交于A,B兩點(diǎn).

1)當(dāng)點(diǎn)PA、B的中點(diǎn)時(shí),求直線AB的方程;

2)求|AF||BF|的最小值.

【答案】(1)x+y=0;(2

【解析】

1)解法1:利用平方差法,求得直線的斜率,即可求解直線的方程;

解法2:設(shè)l的方程為y=kx+2+2,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,求得,即可求解直線的方程.

2)解法1:由拋物線定義可知|AF|=y1+1,|BF|=y2+1,得到|AF||BF|=y1y2+y1+y2+1,聯(lián)立方程組,利用方程的根和系數(shù)的關(guān)系,代入即可求解;

解法2:由拋物線定義可知|AF|=y1+1,|BF|=y2+1,化簡(jiǎn)|AF||BF|=y1y2+y1+y2+1,利用拋物線的性質(zhì),即可求解.

1)解法1:設(shè)Ax1y1),Bx2,y2),,

顯然x1x2,兩式相減得,∴k=-1,

所以直線AB的方程為y-2=-x+2).即x+y=0

解法2:設(shè)Ax1,y1),Bx2,y2),顯然直線l有斜率,

設(shè)l的方程為y=kx+2+2,

聯(lián)立方程,消去x整理得y2-4k2+k+1y+4k+12=0,

解得k=-1k=0明顯不成立),

所以直線AB的方程為y-2=-x+2).即x+y=0

2)解法1:顯然直線l有斜率,設(shè)l的方程為y=kx+2+2

設(shè)Ax1,y1),Bx2,y2),由拋物線定義可知|AF|=y1+1|BF|=y2+1,

所以|AF||BF|=y1+1)(y2+1=y1y2+y1+y2+1

聯(lián)立方程,消去x整理得y2-4k2+k+1y+4k+12=0

,,

所以,

所以當(dāng)時(shí),|AF||BF|取得最小值,且最小值為

解法2:由拋物線定義可知|AF|=y1+1|BF|=y2+1,

所以|AF||BF|=y1+1)(y2+1=y1y2+y1+y2+1,

,

由(1)知x1x2=-8k+1),得,y1+y2=kx1+x2+4+4=4kk+1+4,

所以

所以當(dāng)時(shí),|AF||BF|取得最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在五邊形AEBCD中,,C,(如圖).ABE沿AB折起,使平面ABE⊥平面ABCD,線段AB的中點(diǎn)為O(如圖).

1)求證:平面ABE⊥平面DOE;

2)求平面EAB與平面ECD所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為菱形,底面ABCD,,E、F分別是PCAB的中點(diǎn).

1)證明:平面PAD;

2)若,求PD與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次函數(shù)fx)=ax22bx+8

1)設(shè)集合P{1,2,3}Q{23,4,5},分別從集合PQ中隨機(jī)取一個(gè)數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣2]上有零點(diǎn)且為減函數(shù)的概率?

2)設(shè)集合P[13]Q[2,5],分別從集合PQ中隨機(jī)取一個(gè)實(shí)數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點(diǎn)且為減函數(shù)的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次調(diào)查中,甲、乙、丙、丁四位同學(xué)閱讀量有如下關(guān)系:同學(xué)甲、丙閱讀量之和與乙、丁閱讀量之和相同,同學(xué)甲、乙閱讀量之和大于丙、丁閱讀量之和,丁的閱讀量大于乙、丙閱讀量之和.那么這四名同學(xué)按閱讀量從大到小的排序依次為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)更多人閱讀,聯(lián)合國(guó)教科文組織確定每年的4月23日為“世界讀書(shū)日”設(shè)立目的是希望居住在世界各地的人,無(wú)論你是年老還是年輕,無(wú)論你是貧窮還是富裕,都能享受閱讀的樂(lè)趣,都能尊重和感謝為人類(lèi)文明做出過(guò)巨大貢獻(xiàn)的思想大師們,都能保護(hù)知識(shí)產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機(jī)調(diào)查了200名居民,經(jīng)統(tǒng)計(jì)這200人中通過(guò)電子閱讀與紙質(zhì)閱讀的人數(shù)之比為3:1,將這200人按年齡分組,其中統(tǒng)計(jì)通過(guò)電子閱讀的居民得到的頻率分布直方圖如圖所示,

(1)求a的值及通過(guò)電子閱讀的居民的平均年鹼;

(2)把年齡在第1,2,3組的居民稱(chēng)為青少年組,年齡在第4,5組的居民稱(chēng)為中老年組,若選出的200人中通過(guò)紙質(zhì)閱讀的中老年有30人,請(qǐng)完成下面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為閱讀方式與年齡有關(guān)?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為正三角形,且BCCD2,CDBC,將△ABC沿BC翻折.

1)當(dāng)AD2時(shí),求證:平面ABD⊥平面BCD;

2)若點(diǎn)A的射影在△BCD內(nèi),且直線AB與平面ACD所成角為60°,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為3

(1)求橢圓的方程;

(2)已知P為直角坐標(biāo)平面內(nèi)一定點(diǎn),動(dòng)直線l:與橢圓交于A、B兩點(diǎn),當(dāng)直線PA與直線PB的斜率均存在時(shí),若直線PA與PB的斜率之和為與t無(wú)關(guān)的常數(shù),求出所有滿足條件的定點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案