【題目】已知橢圓的離心率,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長為3

(1)求橢圓的方程;

(2)已知P為直角坐標(biāo)平面內(nèi)一定點(diǎn),動直線l:與橢圓交于A、B兩點(diǎn),當(dāng)直線PA與直線PB的斜率均存在時,若直線PA與PB的斜率之和為與t無關(guān)的常數(shù),求出所有滿足條件的定點(diǎn)P的坐標(biāo).

【答案】(1) .(2) .

【解析】

(1)由題意求得a,c的值,結(jié)合隱含條件求得b,則橢圓方程可求;

(2)設(shè),,將代入橢圓方程,利用韋達(dá)定理及斜率公式化簡可得,與t無關(guān),由此能求出存在滿足條件的m,n的值.

(1)設(shè)橢圓的半焦距為,則,且.

,解得.

依題意,,求得c=1,,于是橢圓的方程為.

(2)設(shè),,將代入橢圓方程得.

,

則有,.

直線的斜率之和

,

當(dāng)時斜率的和恒為0,

解得.

綜上所述,所有滿足條件的定點(diǎn)的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cx2=4y的焦點(diǎn)為F,過點(diǎn)P-2,2)的直線l與拋物線C交于AB兩點(diǎn).

1)當(dāng)點(diǎn)PA、B的中點(diǎn)時,求直線AB的方程;

2)求|AF||BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1左右焦點(diǎn)為F1F2直線(1xy0與該橢圓有一個公共點(diǎn)在y軸上,另一個公共點(diǎn)的坐標(biāo)為(m,1).

1)求橢圓C的方程;

2)設(shè)P為橢圓C上任一點(diǎn),過焦點(diǎn)F1,F2的弦分別為PMPN,設(shè)λ1λ2,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(卷號)2040818101747712

(題號)2050752239689728

(題文)

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,ABCD,∠BAD90°,ABAD1,CD2,若將△BCD沿著BD折起至△BC'D,使得ADBC'

1)求證:平面C'BD⊥平面ABD;

2)求C'D與平面ABC'所成角的正弦值;

3MBD中點(diǎn),求二面角MAC'B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng), 取得極值,的值;

(Ⅱ)當(dāng)函數(shù)有兩個極值點(diǎn),總有 成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=2cosωx)(ω>0)滿足:f)=f),且在區(qū)間(,)內(nèi)有最大值但沒有最小值,給出下列四個命題:P1在[0]上單調(diào)遞減;P2的最小正周期是4πP3的圖象關(guān)于直線x對稱;P4的圖象關(guān)于點(diǎn)(0)對稱.其中的真命題是( )

A.P1,P2B.P2P4C.P1,P3D.P3,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織高一、高二年級學(xué)生進(jìn)行了“紀(jì)念建國70周年”的知識競賽.從這兩個年級各隨機(jī)抽取了40名學(xué)生,對其成績進(jìn)行分析,得到了高一年級成績的頻率分布直方圖和高二年級成績的頻數(shù)分布表.

(Ⅰ)若成績不低于80分為“達(dá)標(biāo)”,估計高一年級知識競賽的達(dá)標(biāo)率;

(Ⅱ)在抽取的學(xué)生中,從成績?yōu)閇95,100]的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來自于同一年級的概率;

(Ⅲ)記高一、高二兩個年級知識競賽的平均分分別為,試估計的大小關(guān)系.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an+1an}是首項(xiàng)為,公比為的等比數(shù)列,a11

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)求數(shù)列{3n1an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案