【題目】如圖,在四棱錐中,底面是正方形平面且.
(1)求證:;
(2)求異面直線與所成角的大小;
(3)求二面角的大小.
【答案】(1)證明見(jiàn)解析;(2)45°;(3)120°
【解析】
(1)建立空間直角坐標(biāo)系,計(jì)算0即可證明垂直關(guān)系;
(2)利用向量求出,即可得到異面直線所成角;
(3)求出兩個(gè)半平面的法向量,根據(jù)法向量所成角的大小求二面角的大小.
(1)由題:底面是正方形,平面,
所以兩兩互相垂直,且
以D為原點(diǎn),分別為軸正方向建立空間直角坐標(biāo)系,設(shè)=1,
所以
,所以,即;
(2),
所以夾角為135°,即異面直線與所成角45°
(3)設(shè)平面的法向量,
則,取,則,
設(shè)平面的法向量,
則,取,則,
所以,
即法向量所成角為60°
所以二面角的大小為120°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知二次函數(shù)(、、均為實(shí)常數(shù),)的最小值是0,函數(shù)的零點(diǎn)是和,函數(shù)滿足,其中,為常數(shù).
(1)已知實(shí)數(shù)、滿足、,且,試比較與的大小關(guān)系,并說(shuō)明理由;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均相等的四棱錐中, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )
A.∥平面B.平面∥平面
C.直線與直線所成角的大小為D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱5kg).某采購(gòu)商打算采購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
箱數(shù) | 40 | 30 | 10 | 20 |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
(1)試計(jì)算樣本中的100箱不同等級(jí)橙子的平均價(jià)格;
(2)按照分層抽樣的方法,從這100個(gè)樣本中抽取10箱,試計(jì)算各等級(jí)抽到的箱數(shù);
(3)若在(2)抽取的特級(jí)品和一級(jí)品的箱子上均編上號(hào)放在一起再?gòu)闹谐槿?/span>2箱,求抽取的2箱中兩種等級(jí)均有的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱有5kg),某采購(gòu)商打算訂購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
箱數(shù) | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機(jī)抽取4箱,求恰好抽到2箱是一級(jí)品的概率:
(2)利用樣本估計(jì)總體,莊園老板提出兩種購(gòu)銷方案供采購(gòu)商參考:
方案一:不分等級(jí)賣(mài)出,價(jià)格為27元/kg;
方案二:分等級(jí)賣(mài)出,分等級(jí)的橙子價(jià)格如下:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再?gòu)某槿〉?/span>10箱中隨機(jī)抽取3箱,X表示抽取的是珍品等級(jí),求x的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)(=1,2,…,6),如表所示:
試銷單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程;
(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (其中e是自然對(duì)數(shù)的底數(shù),k∈R).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.
(1)當(dāng)時(shí),求的值域
(2)令,若對(duì)任意都有恒成立,求的最大值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com