【題目】己知二次函數(shù)、、均為實常數(shù),)的最小值是0,函數(shù)的零點是,函數(shù)滿足,其中,為常數(shù).

1)已知實數(shù)、滿足、,且,試比較的大小關(guān)系,并說明理由;

2)求證:

【答案】1;理由見解析;(2)證明見解析

【解析】

1)由二次函數(shù)的性質(zhì)及根與系數(shù)的關(guān)系可得到:①,②,③,求解方程組可得到的解析式,據(jù)此可得到的解析式,最后對作差并化簡變形即可比較大小;

2)由(1)知,若,且,則,令,,其中,滿足上述條件,故,由此即可證明結(jié)論.

1)由二次函數(shù)的最小值為0可知,①,

的零點是

由根與系數(shù)的關(guān)系可得,②,③,

由①②③可得(舍去),由可得,

所以.

根據(jù)條件,,

,

,且,所以,

2)由(1)知,,

,且,則,

,,其中,則,且

所以,即,其中,

,,

,得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】月,電影《毒液》在中國上映,為了了解江西觀眾的滿意度,某影院隨機調(diào)查了本市觀看影片的觀眾,現(xiàn)從調(diào)查人群中隨機抽取部分觀眾.并用如圖所示的表格記錄了他們的滿意度分數(shù)(分制),若分數(shù)不低于分,則稱該觀眾為“滿意觀眾”,請根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問題.

組別

分組

頻數(shù)

頻率

合計

1)寫出、的值;

2)畫出頻率分布直方圖,估算中位數(shù);

3)在選取的樣本中,從滿意觀眾中隨機抽取名觀眾領(lǐng)取獎品,求所抽取的名觀眾中至少有名觀眾來自第組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 是雙曲線的左右焦點,點在雙曲線上,且,則下列結(jié)論正確的是( )

A. ,則雙曲線離心率的取值范圍為

B. 則雙曲線離心率的取值范圍為

C. ,則雙曲線離心率的取值范圍為

D. ,則雙曲線離心率的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來某企業(yè)每年消耗電費約24萬元,為了節(jié)能減排決定安裝一個可使用15年的太陽能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(單位萬元)與太陽能電池板的面積(單位平方米)成正比比例系數(shù)約為0.5為了保證正常用電,安裝后采用太陽能和電能互補供電的模式假設(shè)在此模式下安裝后該企業(yè)每年消耗的電費(單位:萬元)與安裝的這種太陽能電池板的面積(單位:平方米)之間的函數(shù)關(guān)系是為常數(shù)).記為該村安裝這種太陽能供電設(shè)備的費用與該村15年共將消耗的電費之和

(1)試解釋的實際意義,并建立關(guān)于的函數(shù)關(guān)系式;

(2)為多少平方米時取得最小值?最小值是多少萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求曲線過點的切線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐EABCD中,底面ABCD是菱形,∠ADC60°,ACBD交于點OEC⊥底面ABCD,FBE的中點,ABCE2

1)求證:DE∥平面ACF;

2)求異面直線EOAB所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結(jié)論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結(jié)論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙、丙三位同學在某次考試中總成績列前三名,有,三位學生對其排名猜測如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績公布后得知,,三人都恰好猜對了一半,則第一名是__________

查看答案和解析>>

同步練習冊答案