分析 先將遞推公式兩邊取倒數(shù),再兩邊乘以n,再兩邊減去1,得到1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],即可下結(jié)論.
解答 證明:∵an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$,兩邊取倒數(shù)得,
∴$\frac{1}{{a}_{n}}$=$\frac{2{a}_{n-1}+n-1}{3n{a}_{n-1}}$,兩邊乘以n,并裂項得,
$\frac{n}{{a}_{n}}$=$\frac{2}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$,兩邊減1得,
$\frac{n}{{a}_{n}}$-1=-$\frac{1}{3}$+$\frac{1}{3}$•$\frac{n-1}{{a}_{n-1}}$=$\frac{1}{3}$($\frac{n-1}{{a}_{n-1}}$-1),
因此,1-$\frac{n}{{a}_{n}}$=$\frac{1}{3}$•[1-$\frac{n-1}{{a}_{n-1}}$],
故數(shù)列{1-$\frac{n}{{a}_{n}}$}是以1-$\frac{1}{{a}_{1}}$為首項,以$\frac{1}{3}$為公比的等比數(shù)列,
所以,1-$\frac{n}{{a}_{n}}$=(1-$\frac{1}{{a}_{1}}$)•$(\frac{1}{3})^{n-1}$,其中a1=$\frac{3}{2}$,
解得,an=$\frac{n•3^n}{3^n-1}$.
點評 本題主要考查了等比關(guān)系的確定和數(shù)列通項公式的解法,證明中用到了綜合法與等比數(shù)列定義,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com