【題目】下列四個命題:

函數(shù)的最大值為1;

,的否定是;

為銳角三角形,則有;

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

其中錯誤的個數(shù)是( )

A.1B.2C.3D.4

【答案】A

【解析】

由正弦的二倍角公式和正弦函數(shù)的值域判斷;寫出全稱命題的否定判斷;由銳角三角形的定義和正弦函數(shù)的單調(diào)性,結(jié)合誘導公式可判斷;由二次函數(shù)的圖象和性質(zhì),結(jié)合充分必要條件的定義可判斷.

解:,得的最大值為,故錯誤;

,的否定是,故正確;

為銳角三角形,,則

上是增函數(shù),,同理可得,,,故正確;

,函數(shù)的零點是,0,結(jié)合二次函數(shù)的對稱軸,

可得函數(shù)在區(qū)間內(nèi)單調(diào)遞增;

若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,結(jié)合二次函數(shù)的對稱軸,可得,

,

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件,故正確.

其中錯誤的個數(shù)是1.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知扇形是一個觀光區(qū)的平面示意圖,其中扇形半徑為10米,,為了便于游客觀光和旅游,提出以下兩種設計方案:

1)如圖1,擬在觀光區(qū)內(nèi)規(guī)劃一條三角形形狀的道路,道路的一個頂點在弧上,另一頂點在半徑上,且,求周長的最大值;

2)如圖2,擬在觀光區(qū)內(nèi)規(guī)劃一個三角形區(qū)域種植花卉,三角形花圃的一個頂點在弧上,另兩個頂點在半徑上,且,,求花圃面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名草《周髀算經(jīng)》曾記載有勾股各自乘,并而開方除之,用符號表示為,我們把a,b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;512,137,24,25;9,40,41,以此類推,可猜測第5組股數(shù)的三個數(shù)依次是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年底,我國發(fā)明專利申請量已經(jīng)連續(xù)8年位居世界首位,下表是我國2012年至2018年發(fā)明專利申請量以及相關數(shù)據(jù).

總計

年代代碼

1

2

3

4

5

6

7

28

申請量(萬件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代碼1~7分別表示2012~2018.

1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?

2)建立關于的回歸直線方程(精確到0.01),并預測我國發(fā)明專利申請量突破200萬件的年份.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)求曲線與曲線兩交點所在直線的極坐標方程;

(2)若直線的極坐標方程為,直線軸的交點為,與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風感冒疾病.為了解傷風感冒疾病是否與性別有關,在某婦幼保健院隨機對人院的名幼兒進行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機抽取人,抽到患傷風感冒疾病的幼兒的概率為,

(1)請將下面的列聯(lián)表補充完整;

患傷風感冒疾病

不患傷風感冒疾病

合計

25

20

合計

100

(2)能否在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有關?說明你的理由;

(3)已知在患傷風感冒疾病的名女性幼兒中,名又患黃痘病.現(xiàn)在從患傷風感冒疾病的名女性中,選出名進行其他方面的排查,記選出患黃痘病的女性人數(shù)為,的分布列以及數(shù)學期望.下面的臨界值表供參考:

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線和曲線,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.

(1)求曲線和曲線的直角坐標方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某茶樓有四類茶飲,假設為顧客準備泡茶工具所需的時間互相獨立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計以往為100位顧客準備泡茶工具所需的時間,結(jié)果如下:

類別

鐵觀音

龍井

金駿眉

大紅袍

顧客數(shù)(人)

20

30

40

10

時間(分鐘/人)

2

3

4

6

注:服務員在準備泡茶工具時的間隔時間忽略不計,并將頻率視為概率.

1)求服務員恰好在第6分種開始準備第三位顧客的泡茶工具的概率;

2)用表示至第4分鐘末已準備好了工具的顧客人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點,,若直線上存在四個點,使得是直角三角形,則實數(shù)的取值范圍是(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案