分析 由題意可得各個正切有意義,由兩角和的正切公式變形可得tanA+tanB=tan(A+B)(1-tanAtanB),整體代入式子坐標由誘導公式化簡可得.
解答 證明:∵△ABC不是直角三角形,
∴A、B、C均不為直角,
且A+B+C=π,任意兩角和不為$\frac{π}{2}$,
由兩角和的正切公式可得tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$,
∴tanA+tanB=tan(A+B)(1-tanAtanB)
=tan(π-C)(1-tanAtanB)
=-tanC(1-tanAtanB)
∴tanA+tanB+tanC
=-tanC(1-tanAtanB)+tanC
=tanAtanBtanC.
點評 本題考查兩角和與差的正切函數(shù)公式,變形用并整體代入是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | q1,q3 | B. | q2,q3 | C. | q1,q4 | D. | q2,q4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+1)(x-5)<0 | B. | (x-1)(x+5)<0 | C. | (x-1)(x+5)>0 | D. | (x+1)(x-5)>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -4 | B. | 3 | C. | -11 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com