分析 由${a_{n+1}}={a_n}+\frac{1}{n+1}$,根據(jù)遞推公式an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,根據(jù)等差數(shù)列前n項和公式,即可求得$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$值.
解答 解:由${a_{n+1}}={a_n}+\frac{1}{n+1}$,
得:${a_n}={a_{n-1}}+\frac{1}{n}={a_{n-2}}+\frac{1}{n-1}+\frac{1}{n}={a_{n-3}}+\frac{1}{n-2}+\frac{1}{n-1}+\frac{1}{n}=…=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,
∴$k({a_{2016}}-{a_k})=k(\frac{1}{k+1}+\frac{1}{k+2}+…+\frac{1}{2015}+\frac{1}{2016})$,
$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$=$1•(\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2016})+2•(\frac{1}{3}+\frac{1}{4}…+\frac{1}{2016})+3•(\frac{1}{4}+\frac{1}{5}+…+\frac{1}{2016})+…+2015•\frac{1}{2016}$,
=$\frac{1}{2}+(1+2)•\frac{1}{3}+(1+2+3)•\frac{1}{4}+…+(1+2+…+k)•\frac{1}{k+1}+(1+2+…+2015)•\frac{1}{2016}$,
=$\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+…+\frac{k}{2}+…+\frac{2015}{2}$=$\frac{1}{2}•\frac{(1+2015)•2015}{2}=1015560$.
$\sum_{k=1}^{2015}{k({a_{2016}}}-{a_k})$=1015560.
故答案為:1015560.
點評 本題考查利用遞推公式求等差數(shù)列前n項和,考查等差數(shù)列前n項和的應用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{3}$i | B. | $\frac{2}{3}$ | C. | -$\frac{2}{5}$i | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{34}{9}$ | C. | 4 | D. | -$\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{23}{1250}$ | B. | $\frac{23}{625}$ | C. | $\frac{23}{2500}$ | D. | $\frac{9}{500}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com