【題目】(1)已知函數(shù)y=lg(x2+2x+a)的定義域為R,求實數(shù)a的取值范圍;
(2)已知函數(shù)f(x)=lg[(a2-1)x2+(2a+1)x+1],若f(x)的定義域為R,求實數(shù)a的取值范圍.
【答案】(1)(1,+∞);(2)(-∞,-).
【解析】試題分析:(1)由題意得一元二次不等式恒成立,再根據(jù)二次函數(shù)圖像得判別式小于零(2)由題意得不等式恒成立,再分類討論一次與二次函數(shù),最后根據(jù)二次函數(shù)圖像得判別式小于零
試題解析:(1)因為y=lg(x2+2x+a)的定義域為R,
所以x2+2x+a>0恒成立,所以Δ=4-4a<0,
所以 a>1.
故a的取值范圍是(1,+∞).
(2)依題意(a2-1)x2+(2a+1)x+1>0對一切x∈R恒成立.
當a2-1≠0時,
解得a<-.
當a2-1=0時,顯然(2a+1)x+1>0,對x∈R不恒成立.
所以a的取值范圍是(-∞,-).
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=1+2x.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖像;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線與曲線在點處有相同的切線,試討論函數(shù)的單調(diào)性;
(2)若,函數(shù)在上為增函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量m=(cosx,-1),n=,函數(shù)f(x)=(m+n)·m.
(1)求函數(shù)f(x)的最小正周期;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=1,c=,且f(A)恰是函數(shù)f(x)在上的最大值,求A,b和△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關系,可得回歸方程:,
經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的分別約為和,請用說明選擇哪個回歸模型更合適,并用此模型預測超市廣告費支出為3萬元時的銷售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy上取兩個定點 再取兩個動點,,且.
(Ⅰ)求直線與交點M的軌跡C的方程;
(Ⅱ)過的直線與軌跡C交于P,Q,過P作軸且與軌跡C交于另一點N,F為軌跡C的右焦點,若,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)以“綠色出行”為宗旨開展“共享單車”業(yè)務.該地區(qū)某高級中學一興趣小組由9名高二級學生和6名高一級學生組成,現(xiàn)采用分層抽樣的方法抽取5人,組成一個體驗小組去市場體驗“共享單車”的使用.問:
(Ⅰ)應從該興趣小組中抽取高一級和高二級的學生各多少人;
(Ⅱ)已知該地區(qū)有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.如果從組內(nèi)隨機抽取2人,求抽取的2人中至少有1人在市場體驗過程中租型車的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為2.10元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元.已知甲、乙兩用戶該月用水量分別為5x,3x噸.
(1)求y關于x的函數(shù);
(2)如甲、乙兩戶該月共交水費40.8元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com