6.已知幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{3}(4+14\sqrt{2})$B.$\frac{{14\sqrt{2}π}}{3}$C.$\frac{5π}{3}$D.$\frac{4π}{3}$

分析 由三視圖可知:該幾何體是由一個(gè)球與一個(gè)圓臺(tái)構(gòu)成的.利用體積計(jì)算公式即可得出.

解答 解:由三視圖可知:該幾何體是由一個(gè)球與一個(gè)圓臺(tái)構(gòu)成的.
該幾何體的體積V=$\frac{4π}{3}×{1}^{3}$+$\frac{1}{3}π×({1}^{2}+{2}^{2}+2)×2\sqrt{2}$=$\frac{π}{3}(4+14\sqrt{2})$.
故選:A.

點(diǎn)評(píng) 本題考查了球與圓臺(tái)的三視圖與體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=aln(x+1)-x2,任取x1,x2∈(0,1)且x1≠x2,不等式$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1恒成立,則實(shí)數(shù)a的取值范圍為a≥15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)函數(shù)$f(x)=\frac{{3{x^2}+ax}}{e^x}({a∈R})$.若f(x)在x=0處取得極值,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=$\frac{3}{e}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)拋物線y2=8x的焦點(diǎn)為F,P是拋物線上一點(diǎn),若直線PF的傾斜角為120°,則|PF|=( 。
A.$\frac{8}{3}$B.3C.$\frac{8}{3}$或8D.3或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.直線l與拋物線C:y2=2x交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA,OB的斜率k1,k2滿足${k_1}{k_2}=\frac{2}{3}$,則l的橫截距( 。
A.為定值-3B.為定值3C.為定值-1D.不是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=ex|x-1|-2ax+3a恰有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是$(-\frac{{\sqrt{e}}}{4},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.體積為$\frac{4}{3}π$的球O放置在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1上,且與上表面A1B1C1D1相切,切點(diǎn)為該表面的中心,則四棱錐O-ABCD的外接球的半徑為$\frac{33}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.點(diǎn)P在△ABC的邊BC所在直線上,且滿足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$(m,n∈R),則在平面直角坐標(biāo)系中,動(dòng)點(diǎn)Q(m,m-n)的軌跡的普通方程為y=2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則此幾何體的體積是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案