8.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$sin(A-B)=2{sin^2}(\frac{C}{2}-\frac{π}{4})$.
(1)求sinAcosB的值;
(2)若$\frac{a}=\frac{{2\sqrt{3}}}{3}$,求B.

分析 (1)由已知利用三角形內(nèi)角和定理,三角函數(shù)恒等變換的應用化簡可得$sinAcosB=\frac{1}{2}$;
(2)由已知利用正弦定理及(Ⅰ)可得$sin2B=\frac{{\sqrt{3}}}{2}$,進而可求B的值.

解答 解:(1)$sin(A-B)=1-cos(C-\frac{π}{2})=1-sinC=1-sin(A+B)⇒2sinAcosB=1$,
∴$sinAcosB=\frac{1}{2}$;
(2)$\frac{sinA}{sinB}=\frac{a}=\frac{{2\sqrt{3}}}{3}$,由(1)知$sinAcosB=\frac{{2\sqrt{3}}}{3}sinBcosB=\frac{{\sqrt{3}}}{3}sin2B=\frac{1}{2}$,
∴$sin2B=\frac{{\sqrt{3}}}{2}$,
∴$2B=\frac{π}{3}$或$\frac{2π}{3}$,
∴$B=\frac{π}{6}$或$\frac{π}{3}$.

點評 本題主要考查了三角形內(nèi)角和定理,三角函數(shù)恒等變換的應用,正弦定理在解三角形中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2},則A∩B=( 。
A.{x|0≤x≤3}B.{1,2,3}C.{0,1,2,3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知遞增的等比數(shù)列{an}的公比為q,其前n項和Sn<0,則( 。
A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知f(x)是R上可導的增函數(shù),g(x)是R上可導的奇函數(shù),對?x1,x2∈R都有|g(x1)+g(x2)|≥|f(x1)+f(x2)|成立,等差數(shù)列{an}的前n項和為Sn,f(x)同時滿足下列兩件條件:f(a2-1)=1,f(a9-1)=-1,則S10的值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,在三棱柱ABC-A1B1C1中,已知AC⊥平面BCC1B1,AC=BC=1,BB1=2,∠B1BC=60°.
(1)證明:B1C⊥AB;
(2)已知點E在棱BB1上,二面角A-EC1-C為45°,求$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)$y=sin({\frac{π}{3}x+\frac{π}{6}})$的圖象可由函數(shù)$y=cos\frac{π}{3}x$的圖象至少向右平移m(m>0)個單位長度得到,則m=(  )
A.1B.$\frac{1}{2}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=3lnx-\frac{1}{2}{x^2}+x$,g(x)=3x+a.
(Ⅰ)若f(x)與g(x)相切,求a的值;
(Ⅱ)當$a=\frac{5}{2}$時,P(x1,y1)為f(x)上一點,Q(x2,y2)為g(x)上一點,求|PQ|的最小值;
(Ⅲ)?x0>0,使f(x0)>g(x0)成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知f(x)=ex-ax2,g(x)是f(x)的導函數(shù).
(Ⅰ)求g(x)的極值;
(Ⅱ)若f(x)≥x+1在x≥0時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.各項均不為零的等差數(shù)列{an}的前n項和為Sn,則$\frac{{S}_{5}}{{a}_{3}}$的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

同步練習冊答案