A. | $({\frac{{1-\sqrt{3}}}{2},\frac{{1+\sqrt{3}}}{2}})$ | B. | $({\frac{{1+\sqrt{3}}}{2},\frac{{1-\sqrt{3}}}{2}})$ | C. | $({\frac{{-1-\sqrt{3}}}{2},\frac{{-1+\sqrt{3}}}{2}})$ | D. | $({\frac{{-1+\sqrt{3}}}{2},\frac{{-1-\sqrt{3}}}{2}})$ |
分析 將向量$\overrightarrow{OA}=({1,1})$繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)60°得到$\overrightarrow{OB}$與向量$\overrightarrow{OA}=({1,1})$夾角為60°,即可利用向量的數(shù)量積計(jì)算得到,注意舍去一個(gè).
解答 解:設(shè)$\overrightarrow{OB}$=(x,y),則x2+y2=2①.
又$\overrightarrow{OA}•\overrightarrow{OB}$=x+y=2cos60°=1,②
由①②解得$\left\{\begin{array}{l}{x=\frac{1+\sqrt{3}}{2}}\\{y=\frac{1-\sqrt{3}}{2}}\end{array}\right.$或者$\left\{\begin{array}{l}{x=\frac{1-\sqrt{3}}{2}}\\{y=\frac{1+\sqrt{3}}{2}}\end{array}\right.$,所以$\overrightarrow{OB}$=($\frac{1+\sqrt{3}}{2}$,$\frac{1-\sqrt{3}}{2}$),和($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$),
而向量$\overrightarrow{OB}$由$\overrightarrow{OA}$繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)60°得到,
故$\overrightarrow{OB}$=($\frac{1-\sqrt{3}}{2}$,$\frac{1+\sqrt{3}}{2}$);
故選A.
點(diǎn)評(píng) 本題考查了向量數(shù)量積的定義和坐標(biāo)表示,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com