在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。
(1)設平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
(2)設F是BC的中點,求證:平面AFD⊥平面AFE;
(3)求幾何體ABCDE的體積。
(1)詳見解析;(2)詳見解析;(3)V=2.
解析試題分析: (1) 由DC⊥平面ABC,EB⊥平面ABC可得DC//EB,從而DC∥平面ABE.再由線面平行的性質定理可得DC∥,又由線面平行的判定定理可得∥平面BCDE;(2)證面面垂直,首先考慮證哪條線垂直哪個面. 結合題設和圖形,可考慮證FD⊥平面AFE.因為在△DEF中,由所給長度及勾股定理可得EF⊥FD.由DC⊥平面ABC可得DC⊥AF,又由AB=AC,F(xiàn)是BC的中點,可得AF⊥BC,從而AF⊥平面BCDE,AF⊥FD.這樣由EF⊥FD,AF⊥FD可得FD⊥平面AFE,從而得平面AFD⊥平面AFE.(3)該幾何體是一個四棱錐,其頂點為A,底面為BCDE.
試題解析:(1) ∵DC⊥平面ABC,EB⊥平面ABC
∴DC//EB,又∵DC平面ABE,EB平面ABE,
∴DC∥平面ABE
平面ABE平面ACD,則DC∥
又平面BCDE,CD平面BCDE
所以∥平面BCDE. 4分
(2)在△DEF中,,由勾股定理知,
由DC⊥平面ABC,AF平面ABC,∴DC⊥AF,
又∵AB=AC,F(xiàn)是BC的中點,∴AF⊥BC,
又∵DC∩BC=C,DC平面BCDE ,BC平面BCDE,
∴AF⊥平面BCDE,∴AF⊥FD,又∵AF∩FE=F,∴FD⊥平面AFE,
又FD平面AFD,故平面AFD⊥平面AFE. 9分
(3)==2. 12分
考點:1、空間直線與平面的關系;2、幾何體的體積.
科目:高中數學 來源: 題型:解答題
已知多面體中, 四邊形為矩形,,,平面平面, 、分別為、的中點,且,.
(1)求證:平面;
(2)求證:平面;
(3)設平面將幾何體分成的兩個錐體的體積分別為,,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)求四面體B1C1CD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,儲油灌的表面積為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.
⑴試用半徑表示出儲油灌的容積,并寫出的范圍.
⑵當圓柱高與半徑的比為多少時,儲油灌的容積最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com