若橢圓的離心率為,則         
3或

試題分析:當(dāng)焦點在x軸上時,,所以,所以
當(dāng)焦點在y軸上時,,所以,所以。
綜上知:為3或。
點評:注意討論橢圓的焦點在哪一坐標(biāo)軸上。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線:的漸近線方程是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P1的球坐標(biāo)是P1(4,,),P2的柱坐標(biāo)是P2(2,,1),則|P1P2|=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點作直線交拋物線于兩點,使得恰好平分線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)已知中心在原點O,焦點在軸上的橢圓C的離心率為,點A,B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為。

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點E(3,0),設(shè)點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,點到兩點的距離之和為4,設(shè)點的軌跡為,直線交于兩點。
(Ⅰ)寫出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=2px(p>0)上有一點M,它的橫坐標(biāo)是3,它到焦點的距離是5,則拋物線方程為(  A  )
A.y2=8xB.y2=4xC.y2=3xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點P到兩焦點的距離之積為m,則m取最大值時P點坐標(biāo)是(     )
A.(0,3)或(0,-3)B.
C.(5,0)或(-5,0) D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓右焦點為,M為橢圓的上頂點,O為坐標(biāo)原點,且是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點,設(shè)兩直線的斜率分別為,且,證明:直線AB過定點,并求定點的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊答案