已知橢圓:的左、右焦點(diǎn)分別為,它的一條準(zhǔn)線為,過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn).當(dāng)與軸垂直時(shí),.
(1)求橢圓的方程;
(2)若,求的內(nèi)切圓面積最大時(shí)正實(shí)數(shù)的值.
(1);(2).
【解析】本試題主要是考查了橢圓的方程的求解以及,三角形的中內(nèi)切圓的性質(zhì)的運(yùn)用,結(jié)合向量工具表示面積。
解:(1)當(dāng)與軸垂直時(shí),
得 得 即---------------------(2分)
又 解得,,
故所求橢圓的方程為.----------------------------------(2分)
(2)由點(diǎn),,可設(shè),
① 當(dāng)與軸垂直時(shí),
依(其中為的內(nèi)切圓半徑)
即
得 ,此時(shí)可知------------------------------------(2分)
②當(dāng)與軸不垂直時(shí),
不妨設(shè)直線的方程為
代入 得
則 ---------------(2分)
從而可得
又點(diǎn)到直線的距離.
依(其中為的內(nèi)切圓半徑)
即 -------------------------------------------(2分)
得=
=
知在區(qū)間上該函數(shù)單調(diào)遞增,
故當(dāng)時(shí),即直線的斜率不存在時(shí),最大為,亦即的內(nèi)切圓面積最大.
此時(shí)可知綜上所求為.----------------------2分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過(guò)右焦點(diǎn)且與軸垂直的
直線與橢圓相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,
()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦
點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com