【題目】已知函數(shù)f(x)=ln(﹣3x)+1,則f(lg2)+f(lg)=( 。
A.-1
B.0
C.1
D.2

【答案】D
【解析】解:因?yàn)楹瘮?shù)g(x)=ln(﹣3x)滿足g(﹣x)=ln(+3x)=﹣ln(﹣3x)=﹣g(x),函數(shù)是奇函數(shù),g(lg2)+g(﹣lg2)=0,
所以f(lg2)+f(lg)=f(lg2)+f(﹣lg2)=0+1+1=2.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇),還要掌握函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年5月20日,針對(duì)部分“二線城市”房?jī)r(jià)上漲過(guò)快,媒體認(rèn)為國(guó)務(wù)院常務(wù)會(huì)議可能再次確定五條措施(簡(jiǎn)稱“國(guó)五條”).為此,記者對(duì)某城市的工薪階層關(guān)于“國(guó)五條”態(tài)度進(jìn)行了調(diào)查,隨機(jī)抽取了人,作出了他們的月收入的頻率分布直方圖(如圖),同時(shí)得到了他們的月收入情況與“國(guó)五條”贊成人數(shù)統(tǒng)計(jì)表(如下表):

月收入(百元)

贊成人數(shù)

(1)試根據(jù)頻率分布直方圖估計(jì)這人的中位數(shù)和平均月收入;

(2)若從月收入(單位:百元)在的被調(diào)查者中隨機(jī)選取人進(jìn)行追蹤調(diào)查,求被選取的人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為,點(diǎn).

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點(diǎn),是橢圓上的兩點(diǎn).

(。┤,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,點(diǎn)E為AB中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求證:A1D⊥平面ABD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015 年 12 月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為 2015 年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車(chē)流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市 2015 年 12 月份某星期星期一到星期日某一時(shí)間段車(chē)流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期日

車(chē)流量(萬(wàn)輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù):

(2)利用(1)所求的回歸方程,預(yù)測(cè)該市車(chē)流量為 12 萬(wàn)輛時(shí)的濃度.

參考公式:回歸直線的方程是,

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)C(t,) (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y﹣4=0與圓C交于點(diǎn)M、N,若OM=ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,平面平面 ,.

(Ⅰ)求證: ;

(Ⅱ)若三角形是邊長(zhǎng)為的等邊三角形,求三棱錐外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)命題中正確的個(gè)數(shù)是( ) (1.)若x∈R,則x2+ ≥x;
(2.)若x≠kπ,k∈Z,則sinx+ ≥2;
(3.)設(shè)x,y>0,則 的最小值為8;
(4.)設(shè)x>1,則x+ 的最小值為3.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD,AB=BD=DA=2.BC=CD= ,現(xiàn)將△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[ , ],則直線AB與CD所成角的余弦值取值范圍是(
A.[0, ]∪( ,1)
B.[ , ]
C.[0, ]
D.[0, ]

查看答案和解析>>

同步練習(xí)冊(cè)答案