【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民收入也逐年增加.為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:
附:參考數(shù)據(jù)與公式 ,若 ,則① ;② ;③ .
(1)根據(jù)頻率分布直方圖估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖可以認(rèn)為該貧困地區(qū)農(nóng)民年收入 X 服從正態(tài)分布 ,其中近似為年平均收入 近似為樣本方差 ,經(jīng)計算得:,利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農(nóng)民.若每個農(nóng)民的年收入相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
【答案】(1)17.4;(2)(i)14.77千元(ii)978位
【解析】
(1)用每個小矩形的面積乘以該組中點值,再求和即可得到平均數(shù);
(2)(i)根據(jù)正態(tài)分布可得:即可得解;(ii)根據(jù)正態(tài)分布求出每個農(nóng)民年收入不少于12.14千元的事件概率為0.9773,利用獨立重復(fù)試驗概率計算法則求得概率最大值的k的取值即可得解.
(1)由頻率分布直方圖可得:
;
(2)(i)由題,,
所以滿足題意,即最低年收入大約14.77千元;
(ii),
每個農(nóng)民年收入不少于12.14千元的事件概率為0.9773,
記這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)為X,
恰有k位農(nóng)民中的年收入不少于12.14千元的概率
得,
所以當(dāng)時,,當(dāng)時,,所以這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是978位.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù)().
(1)當(dāng)時,求的定義域;
(2)若,討論時,的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今天你低碳了嗎?近來國內(nèi)網(wǎng)站流行一種名為“碳排放計算器”的軟件,人們可以由此計算出自己每天的碳排放量,如家居用電的碳排放量(千克)耗電度數(shù),汽車的碳排放量(千克)油耗公升數(shù)等,某班同學(xué)利用寒假在兩個小區(qū)逐戶進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例數(shù)據(jù)如下:
小區(qū) | 低碳族 | 非低碳族 | 小區(qū) | 低碳族 | 非低碳族 | |
比例 | 1/2 | 1/2 | 比例 | 4/5 | 1/5 |
(1)如果甲、乙來自小區(qū),丙、丁來自小區(qū),求這4人中恰好有兩人是低碳族的概率;
(2)小區(qū)經(jīng)過大力宣傳,每周非低碳中有20%的人加入到低碳族的行列,如果兩周后隨機地從小區(qū)中任選5個人,記表示5個人中的低碳族人數(shù),求和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品在3-7月份銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 3 | 4 | 5 | 6 | 7 |
銷售量(單位:萬件) | 3 | 6 | 4 | 7 | 8 |
利潤(單位:萬元) | 19 | 34 | 26 | 41 | 46 |
(1)從這5個月的利潤中任選2個值,分別記為,求事件“均小于45”的概率;
(2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)誤差不超過2萬元,則認(rèn)為得到的利潤估計是理想的.請用表格中7月份的數(shù)據(jù)檢驗由(2)中回歸方程所得的該月的利潤的估計數(shù)據(jù)是否理想?
參考公式,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三角形的三邊長是成等差數(shù)列的正整數(shù),其最長邊不大于正整數(shù)時的三角形個數(shù)記為(凡全等的三角形只算1個).寫出,,,,再找出的計算公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)一個整點的有限集稱為一個雙鄰集,如果對內(nèi)每個點,恰有點、、、中的兩點在內(nèi).問對怎樣的正整數(shù),存在一個雙鄰集恰包含個整點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點的軌跡的方程;
(3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當(dāng)取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若把向右平移個單位得到函數(shù),求在區(qū)間上的最小值和最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com