【題目】以下是新兵訓(xùn)練時(shí),某炮兵連8周中炮彈對(duì)同一目標(biāo)的命中情況的柱狀圖:
(1)計(jì)算該炮兵連這8周中總的命中頻率p0 , 并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學(xué)期望;
(3)以(1)中的p0作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問(wèn)至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過(guò)0.99?(取lg0.4=﹣0.398)

【答案】
(1)解:這8周總總命中炮數(shù)為:40+45+46+49+47+49+53+52=381,

總未命中炮數(shù)為32+34+30+32+35+33+30+28=254,

∴該炮兵連這8周中總的命中頻率p0= ,

,

∴根據(jù)表中數(shù)據(jù)知第8周的命中率最高


(2)解:由題意知X~B(3,0.6),

則X的數(shù)學(xué)期望為E(X)=3×0.6=1.8


(3)解:由1﹣(1﹣P0n>0.99,解得0.4n<0.01,

∴n>log0.40.01= =﹣ = ≈5.025,

∴至少要用6枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過(guò)0.99.


【解析】(1)先求出這8周總總命中炮數(shù)和總未命中炮數(shù),由此能求出該炮兵連這8周中總的命中頻率,從而根據(jù)表中數(shù)據(jù)能求出第8周的命中率最高.(2)由題意知X~B(3,0.6),由此能求出X的數(shù)學(xué)期望.(3)由1﹣(1﹣P0n>0.99,得0.4n<0.01,由此能求出至少要用6枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過(guò)0.99.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,短軸兩個(gè)端點(diǎn)為, ,且四邊形是邊長(zhǎng)為的正方形。

(1)求橢圓的方程;

(2)已知圓的方程是,過(guò)圓上任一點(diǎn)作橢圓的兩條切線, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個(gè)數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足:對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;當(dāng)x∈(1,2]時(shí),f(x)=2﹣x.若f(a)=f(2020),則滿足條件的最小的正實(shí)數(shù)a的值為( 。

A. 28 B. 100 C. 34 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線L經(jīng)過(guò)點(diǎn)P(-2,5),且斜率為

(1)求直線L的方程.

(2)求與直線L平行,且過(guò)點(diǎn)(2,3)的直線方程.

(3)求與直線L垂直,且過(guò)點(diǎn)(2,3)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績(jī)?nèi)缦卤?/span>

學(xué)生

數(shù)學(xué)

89

91

93

95

97

物理

87

89

89

92

93

(1)要在這五名學(xué)生中選2名參加一項(xiàng)活動(dòng),求選中的同學(xué)中至少有一人的物理成績(jī)高于90分的概率.

(2)求出這些數(shù)據(jù)的線性回歸直線方程.

參考公式回歸直線的方程是: ,

其中對(duì)應(yīng)的回歸估計(jì)值. , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高一(1)班參加校生物競(jìng)賽學(xué)生的成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(1)求高一(1)班參加校生物競(jìng)賽的人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分?jǐn)?shù)在[80,100]之間的學(xué)生中任選2人進(jìn)行某項(xiàng)研究,求至少有1人分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , an>0,且滿足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通項(xiàng)公式an;
(2)若bn=(﹣1)nan , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn), 的中點(diǎn),且為正三角形.

)求證: 平面

)若, ,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案