10.為了研究高中學(xué)生對(duì)某項(xiàng)體育活動(dòng)的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算得K2≈6.84,則有( 。┮陨系陌盐照J(rèn)為“喜歡體育活動(dòng)與性別有關(guān)系”.
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
A.0.1%B.1%C.99%D.99.9%

分析 把觀測(cè)值同臨界值進(jìn)行比較.得到有99%的把握說(shuō)學(xué)生喜歡體育活動(dòng)與性別有關(guān)系.

解答 解:由題意,K2≈6.84>6.635,對(duì)照表格,可得有99%的把握“喜歡體育活動(dòng)與性別有關(guān)系”.
故選:C.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn),解題時(shí)注意利用表格數(shù)據(jù)與觀測(cè)值比較,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知圓錐的底面直徑為$\frac{2\sqrt{3π}}{3π}$,且它的側(cè)面展開圖是一個(gè)半圓,則圓錐的表面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)(sinθ,cosθ)到直線:xcosθ+ysinθ+1=0的距離為d,則d的取值范圍是( 。
A.[-1,1]B.[0,2]C.(-2,2]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在一段時(shí)間內(nèi),某種商品的價(jià)格x(元)和銷售量y(件)之間的一組數(shù)據(jù)如表:如果y與x呈線性相關(guān)且解得回歸直線的斜率為$\hat b$=0.9,則$\hat a$的值為( 。
價(jià)格x(元)4681012
銷售量y(件)358910
A.0.2B.-0.7C.-0.2D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{lnx}$+kx(k<0).
(Ⅰ)若f'(x)≤0在(1,+∞)上恒成立,求k的最大整數(shù)值.
(Ⅱ)若?t1,t2∈[e,e2],使f'(t1)-k≥f(t2)成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\frac{1-x}{1+x}$,記f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N*,那么下列說(shuō)法正確的是( 。
A.f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱,f2016(0)=0
B.f(x)的圖象關(guān)于點(diǎn)(-1,-1)對(duì)稱,f2016(0)=0
C.f(x)的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱,f2016(0)=1
D.f(x)的圖象關(guān)于點(diǎn)(-1,-1)對(duì)稱,f2016(0)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知雙曲線C與橢圓3x2+8y2=24有相同的焦點(diǎn),且雙曲線C的漸近線方程為y=±2x,則雙曲線C的標(biāo)準(zhǔn)方程為x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.用數(shù)學(xué)歸納法證明$\frac{1}{1•2}+\frac{1}{2•3}+\frac{1}{3•4}+…+\frac{1}{{n({n+1})}}=\frac{n}{n+1}$(n∈N*)時(shí),由n=k到n=k+1,等式左端應(yīng)增加的式子為( 。
A.$\frac{1}{{k({k+1})}}$B.$\frac{1}{{k({k+1})}}+\frac{1}{{({k+1})({k+2})}}$C.$\frac{1}{{k({k+2})}}$D.$\frac{1}{{({k+1})({k+2})}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,k),若$\overrightarrow$=λ$\overrightarrow{a}$,則λ+k=-6.

查看答案和解析>>

同步練習(xí)冊(cè)答案