練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在邊長是2的正方體
-
中,
分別為
的中點. 應用空間向量方法求解下列問題.
(1)求EF的長
(2)證明:
平面
;
(3)證明:
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖
是一個水平放置的正三棱柱
,
是棱
的中點.正三棱柱的主視圖如圖
.
(Ⅰ) 圖
中垂直于平面
的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)
(Ⅱ)求正三棱柱
的體積;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖7-15,在正三棱柱ABC—A
1B
1C
1中,各棱長都等于a,D、E分別是AC
1、BB
1的中點,
(1)求證:DE是異面直線AC
1與BB
1的公垂線段,并求其長度;
(2)求二面角E—AC
1—C的大;
(3)求點C
1到平面AEC的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知幾何體E—ABCD如圖所示,其中四邊形ABCD為矩形,
為等邊三角形,且
點F為棱BE上的動點。
(I)若DE//平面AFC,試確定點F的位置;
(II)在(I)條件下,求二面角E—DC—F的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在棱長為1正方體ABCD-A
1B
1C
1D
1中,M和N分別為A
1B
1和BB
1的中點
(1)求直線AM和CN所成角的余弦值;
(2)若P為B
1C
1的中點,求直線CN與平面MNP所成角的余弦值;
(3)P為B
1C
1上一點,且
,當 B
1D⊥面PMN時,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
一個幾何體是由圓柱
和三棱錐
組合而成,點
、
、
在圓
的圓周上,其正(主)視圖、側(左)視圖的面積分別為10和12,如圖3所示,其中
,
,
,
.
(1)求證:
;
(2)求二面角
的平面角的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,平行六面體ABCD—A
1B
1C
1D
1中,以頂點A為端點的三條棱長度都為1,且兩
兩夾角為60°.
(1)求AC
1的長;
(2)求BD
1與AC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在棱長為1的正四面體ABCD中,E是BC的中點,則
_ ▲ .
查看答案和解析>>