【題目】某樂(lè)園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過(guò)小時(shí)收費(fèi)10元,超過(guò)小時(shí)的部分每小時(shí)收費(fèi)元(不足小時(shí)的部分按小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過(guò)小時(shí),甲、乙二人在每個(gè)時(shí)段離場(chǎng)是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。

(1) 表示甲乙玩都不超過(guò)小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;

(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過(guò)操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示中獎(jiǎng),則該顧客中獎(jiǎng);若電腦顯示謝謝,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.

【答案】(1)(2)

【解析】

試題(1)設(shè)甲付費(fèi)a元,乙付費(fèi)b元,其中a,b=1018,2634,由此利用列舉法能求出甲、乙二人付費(fèi)之和為44的概率;(2)由已知0≤x≤1,0≤y≤1點(diǎn)(xy)在正方形OABC內(nèi),作出條件的區(qū)域,由此能求出顧客中獎(jiǎng)的概率

試題解析:(1)設(shè)甲付費(fèi)元,乙付費(fèi)元,其中

則甲、乙二人的費(fèi)用構(gòu)成的基本事件空間為:

16種情形.

其中,種情形符合題意.

甲、乙二人付費(fèi)之和為的概率為

2)由已知點(diǎn)如圖的正方形內(nèi),

由條件

得到的區(qū)域?yàn)閳D中陰影部分

,令;令

由條件滿足的區(qū)域面積。

設(shè)顧客中獎(jiǎng)的事件為,則顧客中獎(jiǎng)的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線與曲線有且僅有一個(gè)公共點(diǎn),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求滿足的值;

(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足若對(duì)任意≠0,不等式恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示,是梯形的高,,,先將梯形沿折起如圖乙所示的四棱錐,使得.

1)在棱上是否存在一點(diǎn),使得平面?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說(shuō)明理由;

2)點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)直線所成的角最小時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對(duì)稱(chēng)軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱(chēng)則函數(shù)的圖象( )

A. 關(guān)于直線對(duì)稱(chēng) B. 關(guān)于直線對(duì)稱(chēng)

C. 關(guān)于點(diǎn)對(duì)稱(chēng) D. 關(guān)于點(diǎn)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中;

1BMED平行;(2CNBE是異面直線;(3CNBM所成角為60°;(4CNAF垂直. 以上四個(gè)命題中,正確命題的序號(hào)是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過(guò)直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一片森林原面積為,計(jì)劃從某年開(kāi)始,每年砍伐一些樹(shù)林,且每年砍伐面積與上一年剩余面積的百分比相等.并計(jì)劃砍伐到原面積的一半時(shí),所用時(shí)間是10.為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.

1)求每年砍伐面積與上一年剩余面積的百分比;

2)到今年為止,該森林已砍伐了多少年?

3)為保護(hù)生態(tài)環(huán)境,今后最多還能砍伐多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案