已知P是△ABC所在平面內一點,
PB
+
PC
+2
PA
=
0
,現(xiàn)將一粒黃豆隨機撒在△ABC內,則黃豆落在△PBC內的概率是( 。
A.
1
4
B.
1
3
C.
1
2
D.
2
3
以PB、PC為鄰邊作平行四邊形PBDC,則
PB
+
PC
=
PD

PB
+
PC
+2
PA
=
0
,
PB
+
PC
=-2
PA
,得
PD
=-2
PA

由此可得,P是△ABC邊BC上的中線AO的中點,
點P到BC的距離等于A到BC的距離的
1
2

∴S△PBC=
1
2
S△ABC
將一粒黃豆隨機撒在△ABC內,黃豆落在△PBC內的概率為P=
S△PBC
S△ABC
=
1
2

故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)  在四邊形中,已知,
(1)若四邊形是矩形,求的值;
(2)若四邊形是平行四邊形,且,求夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知ABCD的兩條對角線AC與BD交于E,O是任意一點,
求證:+++=4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知=(cosθ,sinθ),=(3-cosθ,4-sinθ),若∥,則cos2θ   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點G是△ABC的重心,
AG
AB
AC
(λ,μ∈R)
,那么λ+μ=______;若∠A=120°,
AB
AC
=-2
,則|
AG
|
的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若非零向量
a
,
b
滿足|
a
-
b
|=|
b
|,則(  )
A.|2
b
|>|
a
-2
b
|
B.|2
b
|<|
a
-2
b
|
C.|2
a
|>|2
a
-
b
|
D.|2
a
|<|2
a
-
b
|

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列有關平面向量分解定理的四個命題中,所有正確命題的序號是_______(填寫命題所對應的序號即可)
(1)一個平面內有且只有一對不平行的可作為表示該平面所有的基;
(2)一個平面內有無數(shù)多對不平行可作為表示該平面內所有的基;
(3)平面的基可能互相垂直;
(4)一個平面內任一非零都可唯一地表示成該平面內三個互不平行的線性組合.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,
(1)若,求實數(shù)的值;
(2)若△為直角三角形,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,已知向量a=(1,2),a-b=(3,1),c=(x,3),若(2a+b)∥c,則x=    .

查看答案和解析>>

同步練習冊答案