不等式組
x≤0
2x+y≥0
x-y+3≥0
所表示平面區(qū)域的面積為
 
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用平面區(qū)域的圖形求平面區(qū)域面積即可.
解答: 解:作出不等式對應(yīng)的平面區(qū)域如圖:(陰影部分),
2x+y=0
x-y+3=0
,解得
x=-1
y=2
,即B(-1,2).
A(0,3),
∴陰影部分的面積為
1
2
×3×1
=
3
2

故答案為:
3
2
點(diǎn)評:本題主要考查二元一次不等式表示平面區(qū)域的計(jì)算,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|≤1},集合B=Z,則A∩B=(  )
A、{0}
B、{x|-1≤x≤1}
C、{-1,0,1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中真命題的個(gè)數(shù)是(  )
①“x=1”是“x2-3x+2=0”的充分不必要條件
②命題“?x∈R,sinx≤1”的否定是“?x∈R,sinx>1”
③“若am2<bm2,則a<b”的逆命題為真命題
④命題p;?x∈[1,+∞),lgx≥0,命題q:?x∈R,x2+x+1<0,則p∨q為真命題.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,求下列條件下數(shù)列的通項(xiàng)公式an
(1)Sn=2•5n-2;
(2)若S1=1,Sn+1=3Sn+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x+y-2≥0
x-y-2≤0
y≤2
,則
y+1
x+1
的取值范圍為( 。
A、[
1
3
,3]
B、[
1
3
3
5
]
C、[-
1
3
,3]
D、[
3
5
,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-1,x≤1
log2x,x>1
,則 f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-ex
的值域?yàn)?div id="bslatb5" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要從已編號(1~360)的360件產(chǎn)品中隨機(jī)抽取30件進(jìn)行檢驗(yàn),用系統(tǒng)抽樣的方法抽出樣本,若在抽出的樣本中有一個(gè)編號為105,則在抽出的樣本中最大的編號為( 。
A、355B、356
C、357D、358

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ω=-
1
2
+
3
2
i(i是虛數(shù)單位),(ωx+
.
ω
2015的展開式中系數(shù)為實(shí)數(shù)的項(xiàng)有( 。
A、671項(xiàng)B、672項(xiàng)
C、673項(xiàng)D、674項(xiàng)

查看答案和解析>>

同步練習(xí)冊答案