分析 (1)由已知求得數列的偶數項的和,由奇數項和減去偶數項和求得中間項,再由前m項和求出m,結合am-a1=48求得公差,代入前m項和求得首項,則等差數列的通項公式可求;
(2)由$\frac{1}{{a}_{m-1}{a}_{m}}=\frac{1}{(8m-26)(8m-18)}$=$\frac{1}{8}(\frac{1}{8m-26}-\frac{1}{8m-18})$,利用裂項相消法求得$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…$\frac{1}{{a}_{m-1}{a}_{m}}$的值.
解答 解:(1)∵等差數列{an}的前m項(m為奇數)之和為98,其中奇數項之和為56,
∴其中偶數項的和為98-56=42,
∴中間項為56-42=14,
則14m=98,得m=7,
又am-a1=48,
∴a7-a1=6d=48,則d=8,
代入$7{a}_{1}+\frac{7×6×8}{2}=98$,得a1=-10.
∴an=-10+8(n-1)=8n-18;
(2)∵$\frac{1}{{a}_{m-1}{a}_{m}}=\frac{1}{(8m-26)(8m-18)}$=$\frac{1}{8}(\frac{1}{8m-26}-\frac{1}{8m-18})$,
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…$\frac{1}{{a}_{m-1}{a}_{m}}$=$\frac{1}{8}(\frac{1}{-18}-\frac{1}{-10}+\frac{1}{-10}-\frac{1}{-2}+…+\frac{1}{8m-26}-\frac{1}{8m-18})$
=$\frac{1}{8}(-\frac{1}{18}-\frac{1}{8m-18})=\frac{m}{36(9-4m)}$.
點評 本題考查等差數列的通項公式,考查了等差數列的性質,訓練了裂項相消法求數列的前n項和,是中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com