如圖所示,已知P是⊙O外一點(diǎn),PD為⊙O的切線,D為切點(diǎn),割線PEF經(jīng)過圓心O,若PF=12,PD=4,則∠EFD的度數(shù)為________.
30°.
由切割線定理,得PD2PE·PFPE=4,
EF=8,OD=4.
ODPD,ODPO,∴∠P=30°.
∴∠POD=60°,∠EFDPOD=30°.故填30°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A、B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連接PB交圓O于點(diǎn)D,若MC=BC.

(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于EAD垂直CDD,BC垂直CDC,EF垂直ABF,連接AE,BE.證明:
 
(1)∠FEB=∠CEB;
(2)EF2AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB是圓O的兩條切線,A、B是切點(diǎn),C是劣弧AB(不包括端點(diǎn))上一點(diǎn),直線PC交圓O于另一點(diǎn)D,Q在弦CD上,且求證:

(1);(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,CD∥AP,AD與BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2=EF·EC.

(1)求證:∠P=∠EDF;
(2)求證:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E.

求證:(1)IE=EC;
(2)IE2=ED·EA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,EF是中位線,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過點(diǎn)P的直線與⊙O相交于AB兩點(diǎn).若PA=1,AB=2,PO=3,則⊙O的半徑等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,PA、PB是⊙O的兩條切線,A、B為切點(diǎn),直線OP交⊙O于點(diǎn)D、E,交AB于點(diǎn)C,圖中互相垂直的線段有________⊥________.(只要求寫出一對(duì)線段)

查看答案和解析>>

同步練習(xí)冊(cè)答案