已知O是坐標(biāo)原點(diǎn),A(2,1),P(x,y)滿足
x-4y+3≤0
3x+5y≤25
x-1≥0
,則
OP
OA
方向上的投影的最大值等于
 
分析:先根據(jù)約束條件畫出可行域,利用向量的數(shù)量積將投影|
OP
|•cos∠AOP轉(zhuǎn)化成
2x+y
5
,設(shè)z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內(nèi)的點(diǎn)M時(shí),從而得到|
OP
|•cos∠AOP的最大值即可.
解答:精英家教網(wǎng)解:在平面直角坐標(biāo)系中畫出不等式組所表示的可行域(如圖),
由于|
OP
|•cos∠AOP=
|
OP
|•|
OA
|cos∠AOP
|
OA
|

=
OP
OA
|
OA
|
,而
OA
=(2,1),
OP
=(x,y),
所以|
OP
|•cos∠AOP=
2x+y
5

令z=2x+y,則y=-2x+z,即z表示直線y=-2x+z在y軸上的截距,
由圖形可知,當(dāng)直線經(jīng)過可行域中的點(diǎn)M時(shí),z取到最大值,
x-4y+3=0
3x+5y=25
得M(5,2),這時(shí)z=12,
所以|
OP
|•cos∠AOP=
12
5
=
12
5
5
,
故|
OP
|•cos∠AOP的最大值等于
12
5
5

故答案為:
12
5
5
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),A,B是平面上的兩點(diǎn),且
OA
=(-1,2)
,
OB
=(3,m)
.若△AOB是直角三角形,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),A(2,-1)B(-4,8),
AB
+3
BC
=
0
OC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點(diǎn),A(2009,0),B(0,2009),若點(diǎn)C滿足
AC
=t
AB
,t∈R,令
OD
=(x,y)
,且
OD
OC
的夾角為θ,則對(duì)任意t∈R,滿足θ∈[0°,90°)的一個(gè)(x,y)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•豐臺(tái)區(qū)二模)已知O是坐標(biāo)原點(diǎn),A(1,2),B(5,1),C(x,4),設(shè)AC的中點(diǎn)為D,若
OD
BC
,則x=
11
11

查看答案和解析>>

同步練習(xí)冊(cè)答案