設(shè)數(shù)列滿足,
(1)求;
(2)猜想出的一個通項(xiàng)公式并用數(shù)學(xué)歸納法證明你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足(,是大于0的常數(shù),且),數(shù)列是公比不為的等比數(shù)列,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求出所有可能的實(shí)數(shù)的值,若不存在說明理由;
(3)數(shù)列是否能為等比數(shù)列?若能,請給出一個符合的條件的和的組合,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù) 列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由與的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分,計入總分)
已知數(shù)列滿足:
⑴求;
⑵當(dāng)時,求與的關(guān)系式,并求數(shù)列中偶數(shù)項(xiàng)的通項(xiàng)公式;
⑶求數(shù)列前100項(xiàng)中所有奇數(shù)項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè),是等差數(shù)列,的前n項(xiàng)和,若,則使得為整數(shù)的正整數(shù)n的個數(shù)是( ).
A.2 | B.3 | C.4 | D.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
己知等差數(shù)列的首項(xiàng)為,公差為,其前項(xiàng)和為,若直線與圓的兩個交點(diǎn)關(guān)于直線對稱,則( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
等差數(shù)列{an}的公差d < 0,且a2a4 = 12,a2 + a4 = 8,則數(shù)列{an}的通項(xiàng)公式是( )
A.a(chǎn)n = 2n-2 (n∈N*) | B.a(chǎn)n =" 2n" + 4 (n∈N*) |
C.a(chǎn)n =-2n + 12 (n∈N*) | D.a(chǎn)n =-2n + 10 (n∈N*) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com