【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅲ)當(dāng)n為何值時,Sn最大,并求Sn的最大值.
【答案】解:(Ⅰ)依題意,∵a3=24,S11=0,
∴a1+2d=24,a1+55d=0,
解之得a1=40,d=﹣8,∴an=48﹣8n.
(Ⅱ)由(Ⅰ)知,a1=40,an=48﹣8n,
∴Sn= =﹣4n2+44n.
(Ⅲ)由(Ⅱ)有,Sn=﹣4n2+44n=﹣4(n﹣5.5)2+121,
故當(dāng)n=5或n=6時,Sn最大,且Sn的最大值為120
【解析】(Ⅰ)分別利用等差數(shù)列的通項(xiàng)公式及等差數(shù)列的前n項(xiàng)和的公式由a3=24,S11=0表示出關(guān)于首項(xiàng)和公差的兩個關(guān)系式,聯(lián)立即可求出首項(xiàng)與公差,即可得到數(shù)列的通項(xiàng)公式;(Ⅱ)根據(jù)(Ⅰ)求出的首項(xiàng)與公差,利用等差數(shù)列的前n項(xiàng)和的公式即可表示出Sn;(Ⅲ)根據(jù)(2)求出的前n項(xiàng)和的公式得到Sn是關(guān)于n的開口向下的二次函數(shù),根據(jù)n為正整數(shù),利用二次函數(shù)求最值的方法求出Sn的最大值即可.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的性質(zhì)的相關(guān)知識點(diǎn),需要掌握在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋擲一枚骰子,當(dāng)它每次落地時,向上一面的點(diǎn)數(shù)稱為該次拋擲的點(diǎn)數(shù),可隨機(jī)出現(xiàn)1到6點(diǎn)中的任一個結(jié)果.連續(xù)拋擲兩次,第一次拋擲的點(diǎn)數(shù)記為a,第二次拋擲的點(diǎn)數(shù)記為b.
(1)求直線ax+by=0與直線x+2y+1=0平行的概率;
(2)求長度依次為a,b,2的三條線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( )
A.命題q,p都正確
B.命題p正確,命題q不正確
C.命題q,p都不正確
D.命題q不正確,命題p正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC= .
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知動點(diǎn)到定點(diǎn)的距離與到定直線的距離之比為.
(1)求動點(diǎn)的軌跡的方程;
(2)已知為定直線上一點(diǎn).
①過點(diǎn)作的垂線交軌跡于點(diǎn)(不在軸上),求證:直線與的斜率之積是定值;
②若點(diǎn)的坐標(biāo)為,過點(diǎn)作動直線交軌跡于不同兩點(diǎn),線段上的點(diǎn)滿足,求證:點(diǎn)恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是計(jì)算1+ + +…+ 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填的是( )
A.i>10
B.i<10
C.i>20
D.i<20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為三角形ABC的三內(nèi)角,其對應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;
(2)若 ,b+c=4,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知球內(nèi)接四棱錐的高為相交于,球的表面積為,若為中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com