3.函數(shù)f(x)=x3+bx+c是[-1,1]上的增函數(shù),且f(-1)•f(1)<0,則方程f(x)=0在[-1,1]內(nèi)( 。
A.有3個(gè)實(shí)數(shù)根B.有2個(gè)實(shí)數(shù)根C.有唯一的實(shí)數(shù)根D.沒有實(shí)數(shù)根

分析 先有f(x)=x3+bx+c是增函數(shù),知道交點(diǎn)最多一個(gè),再有f(-1)•f(1)<0,知道在[-1,1]上有唯一實(shí)數(shù)根;可得結(jié)論.

解答 解:由f(x)在[-1,1]上是增函數(shù),所以在[-1,1]最多一個(gè)根,
又f(-1)•f(1)<0,知f(x)在[-1,1]上有唯一實(shí)數(shù)根;
所以方程f(x)=0在[-1,1]上有唯一實(shí)數(shù)根.
故選:C.

點(diǎn)評(píng) 本題主要考查知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷、函數(shù)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC是邊長(zhǎng)為2的等邊三角形,向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a4+a9=10,則S12等于(  )
A.30B.45C.60D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)(2,0,3)位于( 。
A.Y軸上B.X軸上C.XOZ平面內(nèi)D.YOZ平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若命題p是真命題,命題q是假命題,則下列命題一定是真命題的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.A,B,C是球O上的三點(diǎn),AB=5,AC=3,BC=4,球O的直徑等于13,則球心O到平面ABC的距離為( 。
A.$2\sqrt{3}$B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=${log_{\frac{1}{2}}}|{sin(x-\frac{π}{4})}$|.
(1)求函數(shù)f(x)的定義域和值域;
(2)判定f(x)的奇偶性,并求出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列四個(gè)選項(xiàng)錯(cuò)誤的是(  )
A.命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B.若p∨(¬q)為假命題,則p∧q為假命題
C.“a≠5且b≠-5”是“a+b≠0”的充分不必要條件
D.若命題p:?x∈R,x2+x+1≠0,則¬p:?x0∈R,${x_0}^2+{x_0}+1=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.三條直線兩兩相交,它們可以確定的平面有1或3個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案