1.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

分析 根據(jù)三視圖作出幾何體的直觀圖,將幾何體分解成兩個(gè)棱錐計(jì)算體積.

解答 解:做出幾何體的直觀圖如圖所示:
其中底面ABCD是邊長(zhǎng)為2的正方形,AE,DF為底面的垂線,
且AE=2,DF=1,
∴V=VE-ABC+VC-ADFE=$\frac{1}{3}×\frac{1}{2}×2×2×2$+$\frac{1}{3}×\frac{1}{2}×(1+2)×2×2$=$\frac{10}{3}$.
故選D.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖,體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法錯(cuò)誤的是( 。
A.若p:?x∈R,x2-x+1≥0,則¬p:?x∈R,x2-x+1<0
B.“$sinθ=\frac{1}{2}$”是“θ=30°或θ=150°”的充分不必要條件
C.命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”
D.已知p:?x∈R,cosx=1,q:?x∈R,x2-x+2>0,則“p∧(¬q)”為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知y=f(x+1)+2是定義域?yàn)镽的奇函數(shù),則f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知{an}是等比數(shù)列,a3=1,a7=9,則a5=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex+ax+b(a,b∈R)在x=ln2處的切線方程為y=x-2ln2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0,k≤2時(shí),求證:(k-x)f'(x)<x+1(其中f'(x)為f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知Sn為數(shù)列{an}的前n項(xiàng)和,$\frac{a_1}{2}+\frac{a_2}{3}+\frac{a_3}{4}+…+\frac{{{a_{n-1}}}}{n}={a_n}-2(n≥2)$且a1=2.則{an}的通項(xiàng)公式為an=n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.我國(guó)古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時(shí)期的名著的概率為( 。
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.為了得到函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象,可以將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向左平移$\frac{π}{6}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABO中,點(diǎn)C是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),點(diǎn)D是OB靠近B的三等分點(diǎn),DC與OA交于E點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OC}$,$\overrightarrow{CD}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案