【題目】已知點和非零實數(shù),若兩條不同的直線、均過點,且斜率之積為,則稱直線、是一組“共軛線對”,如直線和是一組“共軛線對”,其中是坐標(biāo)原點.
(1)已知、是一組“共軛線對”,且知直線,求直線的方程;
(2)如圖,已知點、點和點分別是三條傾斜角為銳角的直線、、上的點(、、與、、均不重合),且直線、是“共軛線對”,直線、是“共軛線對”,直線、是“共軛線對”,求點的坐標(biāo);
(3)已知點,直線、是“共軛線對”,當(dāng)的斜率變化時,求原點到直線、的距離之積的取值范圍.
【答案】(1);(2)或;(3).
【解析】
(1)由可得直線的斜率,進(jìn)而可得直線的方程;
(2)設(shè)直線的斜率分別為,可得,求解可得的值,進(jìn)一步得到直線與直線的方程,聯(lián)立得的坐標(biāo);
(3)設(shè),其中,利用兩點間的距離公式可得原點到直線、的距離,變形后利用基本不等式求解.
解:(1)由已知得,又,
直線的方程;
(2)設(shè)直線的斜率分別為,
則,得或.
當(dāng)時,
直線的方程為,直線的方程為,聯(lián)立得;
當(dāng)時,
直線的方程為,直線的方程為,聯(lián)立得.
故所求為或;
(3)設(shè),其中,
故
.
由于(等號成立的條件是),
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線1過原點O.
(1)若直線l與圓C相切,求直線l的斜率;
(2)若直線l與圓C交于A、B兩點,點P的坐標(biāo)為,若.求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和C2的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為,直線l與曲線C1和C2分別交于不同于原點的A,B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一列非零向量滿足:(其中是非零常數(shù)).
(1)求數(shù)列的通項公式;
(2)求向量與夾角的弧度數(shù)
(3)當(dāng)時,把中所有與共線的向量按原來的順序排成一列,記為令為坐標(biāo)原點,求點列的極限點D的坐標(biāo).(注:若點坐標(biāo)為且則稱點D為點列的極限點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)若函數(shù)有兩個極值點、,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在三棱錐中,,是直角三角形,,
,點分別為的中點.
(1)求證:;
(2)求直線與平面所成角的大小;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】摩拜單車和小黃車等各種共享單車的普及給我們的生活帶來了便利.已知某共享單車的收費標(biāo)準(zhǔn)是:每車使用不超過1小時(包含1小時)是免費的,超過1小時的部分每小時收費1元(不足1小時的部分按1小時計算,例如:騎行2.5小時收費2元).現(xiàn)有甲、乙兩人各自使用該種共享單車一次.設(shè)甲、乙不超過1小時還車的概率分別為1小時以上且不超過2小時還車的概率分別為兩人用車時間都不會超過3小時.
(Ⅰ)求甲乙兩人所付的車費相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車費之和為隨機(jī)變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體的棱長為1.
正方體中哪些棱所在的直線與直線是異面直線?
若M,N分別是 ,的中點,求異面直線MN與BC所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com