【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和C2的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為,直線l與曲線C1和C2分別交于不同于原點(diǎn)的A,B兩點(diǎn),求|AB|的值.
【答案】(1),;(2)
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
(2)利用極徑的應(yīng)用求出結(jié)果.
(1)曲線C1的參數(shù)方程為(t為參數(shù)),
轉(zhuǎn)換為直角坐標(biāo)方程為:y2=8x,
轉(zhuǎn)換為極坐標(biāo)方程為:ρsin2θ=8cosθ.
曲線C2的參數(shù)方程為(α為參數(shù)),
轉(zhuǎn)換為直角坐標(biāo)方程為:x2+y2-2x-2y=0,
轉(zhuǎn)換為極坐標(biāo)方程為:ρ-2cosθ-2sinθ=0.
(2)設(shè)A()B(),
所以:,,
所以:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),直線l:.
討論的圖象與直線l的交點(diǎn)個(gè)數(shù);
若函數(shù)的圖象與直線l:相交于,兩點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.直線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;
(2)已知直線與曲線交于兩點(diǎn),與軸交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)圓錐軸的截面為等腰直角三角形,為底面圓周上一點(diǎn),已知,圓錐體積為,點(diǎn)為底面圓的圓心
(1)求該圓錐的全面積
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示)
(3)求點(diǎn)到平面的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,直線與拋物線交于不同的兩點(diǎn)、,線段中點(diǎn)的縱坐標(biāo)為2,且.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)拋物線的焦點(diǎn)為,若直線經(jīng)過(guò)焦點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)和非零實(shí)數(shù),若兩條不同的直線、均過(guò)點(diǎn),且斜率之積為,則稱直線、是一組“共軛線對(duì)”,如直線和是一組“共軛線對(duì)”,其中是坐標(biāo)原點(diǎn).
(1)已知、是一組“共軛線對(duì)”,且知直線,求直線的方程;
(2)如圖,已知點(diǎn)、點(diǎn)和點(diǎn)分別是三條傾斜角為銳角的直線、、上的點(diǎn)(、、與、、均不重合),且直線、是“共軛線對(duì)”,直線、是“共軛線對(duì)”,直線、是“共軛線對(duì)”,求點(diǎn)的坐標(biāo);
(3)已知點(diǎn),直線、是“共軛線對(duì)”,當(dāng)的斜率變化時(shí),求原點(diǎn)到直線、的距離之積的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com