11.設橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的左右交點分別為F1,F(xiàn)2,點P在橢圓上,且滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=9,則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|的值為( 。
A.8B.10C.12D.15

分析 根據(jù)橢圓的定義可判斷|PF1|+|PF2|=8,平方得出|PF1|2+|PF2|2,再利用余弦定理求解即可.

解答 解:∵P是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1一點,F(xiàn)1、F2分別是橢圓的左、右焦點,
∴|PF1|+|PF2|=8,|F1F2|=4,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=9,即|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|cosθ=9,
16=|$\overrightarrow{P{F}_{1}}$|2+|$\overrightarrow{P{F}_{2}}$|2-2|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|cosθ
=(|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|)2-2|PF1|•|PF2|-18=64-2|PF1|•|PF2|-18=16,
∴|PF1|•|PF2|=15,
故選:D.

點評 本題考查了橢圓的定義以及簡單性質的應用,焦點三角形的問題,結合余弦定理整體求解,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知k>0,且不等式$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y≤kx+2}\end{array}\right.$表示的平面區(qū)域的面積為S,則(k-2)S2的最大值等于$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知焦點均在x軸上的雙曲線C1,與雙曲線C2的漸近線方程分別為y=土k1x 與y=±k2x,記雙曲線C1的離心率e1,雙曲線C2的離心率e2,若k1k2=1,則e1e2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x|x-2|.
(1)作出函數(shù)f(x)=x|x-2|的大致圖象;
(2)若方程f(x)-k=0有三個解,求實數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知從集合M到N的映射f滿足f(a)-f(b)-f(c)=0,且集合M={a,b,c},N={-1,0,1},那么映射f的個數(shù)為( 。
A.7B.5C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設集合A={x|2kπ+$\frac{π}{3}$<x<2kπ+$\frac{5π}{3}$,k∈Z},B={x|-4<x<4},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)的值滿足f(x)<0,對任意實數(shù)x,y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,當0<x<1時,f(x)∈(0,1).
(1)求f(1)的值,判斷f(x)的奇偶性并證明;
(2)判斷f(x)在(0,+∞)上的單調性,并給出證明;
(3)若a≥0且f(a+1)≤$\root{3}{9}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f($\frac{2}{x}$+1)=lgx,則函數(shù)f(x)的解析式為( 。
A.f(x)=$\frac{2}{x-1}$B.f(x)=lg$\frac{2}{x-1}$C.f(x)=lg($\frac{2}{x}$+1)D.f(x)=lg(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合M={x|x2<4},N={x|x<1},則M∩N=( 。
A.{x|-2<x<1}B.{x|x<-2}C.{x|x<1}D.{x|x<2}

查看答案和解析>>

同步練習冊答案