精英家教網 > 高中數學 > 題目詳情

【題目】已知奇函數在區(qū)間上是增函數,且最大值為10,最小值為4,則在區(qū)間的最大值、最小值分別是( )

A. -4,-10 B. 4,-10

C. 10,4 D. 不確定

【答案】A

【解析】奇函數圖象關于原點對稱,奇函數在區(qū)間上是增函數,且最大值為10,最小值為4,在區(qū)間的最大值為 ,最小值為.選A.

點精函數的定義域關于原點對稱時是函數具有奇偶性的前提,而判斷奇偶就是尋求f(-x)f(x)的關系,當時,函數為奇函數,當時,函數為偶函數;奇函數圖象關于原點對稱,偶函數的圖象關于y軸對稱,奇函數在關于原點對稱的單調區(qū)間上單調性相同,偶函數在關于原點對稱的單調區(qū)間上單調性相反,借助函數的單調性和特殊點特殊值,根據函數的奇偶性可以模擬函數圖象,用于比較大小,解不等式,求最值等.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數據:

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程=x+;

參考公式:用最小二乘法求線性回歸方程系數公式 ,.)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數上的偶函數, 上的奇函數,且.

(1)求的解析式;

(2)若函數上只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數R上的偶函數,且當x>0時,函數的解析式為= .

(1)判斷并證明(0,+∞)上的單調性;

(2):x<0時,函數的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)求與圓心在直線上,且過點A(2,-3),B(-2,-5)的圓C的方程.

(2)是圓C上的點,求的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題滿分12已知橢圓C: 的離心率為,右焦點為(,0).(1)求橢圓C的方程;(2)若過原點作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,底面,,,的中點,為棱的中點.

I)證明:平面;

II)已知,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017屆江蘇如東高級中學等四校高三12月聯(lián)考】已知數列滿足,,且對任意,都有

(1)求,;

(2)設).

求數列的通項公式;

設數列的前項和,是否存在正整數,,且,使得成等比數列?若存在,求出,的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案