由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某中學隨機抽取16名學生,經(jīng)校醫(yī)用對數(shù)視力表檢査得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:
(I )若視力測試結(jié)果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(II)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望,據(jù)此估計該校高中學生(共有5600人)好視力的人數(shù)

(1) (2) 的分布列為:


0
1
2
3
P




,該校高中學生好視力人數(shù)約為

解析試題分析:(1)16人中有4為“好視力”,至多有1名是“好視力”這個事件包含0人是好視力和恰有1人是好視力,將這兩種情況相加即得
(2)從該校中任選3人,由于人數(shù)很多,故看作3次獨立重復試驗 由16人的樣本數(shù)據(jù)知,好視力學生占比為,故任選1人,該人為好視力的概率為,所以服從二項分布,據(jù)此可得分布列及期望,也可估算出高中學生中好視力學生的人數(shù)
試題解析:(1)設(shè)事件為所取三名學生中有名是“好視力”,至多有1名是“好視力”記為事件A,      5分
(2)由題意知          6分
    
         8分
的分布列為:


0
1
2
3
P




數(shù)學期望(或者 10分
該校高中學生好視力人數(shù)約為(人)     12分
考點:1、統(tǒng)計;2、二項分布及其應(yīng)用

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分,該射手每次射擊的結(jié)果相互獨立.假設(shè)該射手完成以上三次射擊.
(1)求該射手恰好命中兩次的概率;
(2)求該射手的總得分X的分布列及數(shù)學期望E(X);
(3)求該射手向甲靶射擊比向乙靶射擊多擊中一次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

湖南省在學業(yè)水平考查中設(shè)計了物理學科的實驗考查方案:考生從道備選試驗考查題中一次隨機抽取題,并按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中題便通過考查.已知道備選題中文科考生甲有題能正確完成,題不能完成;文科考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(Ⅰ)分別寫出文科考生甲正確完成題數(shù)和文科考生乙正確完成題數(shù)的概率分布列,并計算各自的數(shù)學期望;
(Ⅱ)試從兩位文科考生正確完成題數(shù)的數(shù)學期望及通過考查的概率分析比較這兩位考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲有一只放有x個紅球,y個黃球,z個白球的箱子,乙有一只放有3個紅球,2個黃球,1個白球的箱子,
(1)兩個各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

淮南八公山某種豆腐食品是經(jīng)過A、B、C三道工序加工而成的,A、B、C工序的產(chǎn)品合格率分別為、、.已知每道工序的加工都相互獨立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;有兩次合格為二等品;其它的為廢品,不進入市場.
(Ⅰ)正式生產(chǎn)前先試生產(chǎn)2袋食品,求這2袋食品都為廢品的概率;
(Ⅱ)設(shè)ξ為加工工序中產(chǎn)品合格的次數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.
(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

氣象部門提供了某地今年六月份(30天)的日最高氣溫的統(tǒng)計表如下:

日最高氣溫t (單位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天數(shù)
6
12
   

由于工作疏忽,統(tǒng)計表被墨水污染,Y和Z數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.
某水果商根據(jù)多年的銷售經(jīng)驗,六月份的日最高氣溫t (單位:℃)對西瓜的銷售影響如下表:
日最高氣溫t (單位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日銷售額(千元)
2
5
    6
8
(Ⅰ) 求, 的值;
(Ⅱ) 若視頻率為概率,求六月份西瓜日銷售額的期望和方差;
(Ⅲ) 在日最高氣溫不高于32℃時,求日銷售額不低于5千元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)有關(guān)于x的一元二次方程
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在一次數(shù)學考試中,第22,23,24題為選做題,規(guī)定每位考生必須且只須在其中選做一題,設(shè)5名考生選做這三題的任意一題的可能性均為,每位學生對每題的選擇是相互獨立的,各學生的選擇相互之間沒有影響.
(1)求其中甲、乙兩人選做同一題的概率;
(2)設(shè)選做第23題的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案