甲有一只放有x個紅球,y個黃球,z個白球的箱子,乙有一只放有3個紅球,2個黃球,1個白球的箱子,
(1)兩個各自從自己的箱子中任取一球,規(guī)定:當兩球同色時甲勝,異色時乙勝。若用x、y、z表示甲勝的概率;
2)在(1)下又規(guī)定當甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時x、y、z的值。
(1);(2)時, 最大.
解析試題分析:(1)甲勝包含甲、乙均取紅球,甲、乙均取白球,甲、乙均取黃球三種情況,將這三種情況的概率求出相加即得.(2)設甲的得分為隨機變量,根據題設可取0、1、2、3.由(1)可得取1、2、3的概率(用x,y,z表示),用1減去這三個概率即得取0的概率,從而可得的期望,再根據可得期望的最大值及x,y,z的值.
試題解析:(1)P(甲勝)=P(甲、乙均取紅球)+P(甲、乙均取白球)+P(甲、乙均取黃球)
(2)設甲的得分為隨機變量,則:
∵x、y、z∈N且x+y+z=6,∴0≤y≤6
所以時,取得最大值,此時.
考點:1、隨機變量的分布列及期望;2、最值問題.
科目:高中數學 來源: 題型:解答題
遼寧某大學對參加全運會的志愿者實施“社會教育實踐”學分考核,因該批志愿者表現良好,該大學決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核為合格,授予0.5個學分;考核為優(yōu)秀,授予1個學分,假設該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學分之和為隨機變量X,求隨機變量X的分布列.
(3)求X的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進行調查,他們月收入(單位:百元)的頻數分布及對樓市限購令的贊成人數如下表:
月收入 | [25,35) | [35,45) | ||||
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 8 | 5 | 2 | 1 |
| 非高收入族 | 高收入族 | 總計 |
贊成 | | | |
不贊成 | | | |
總計 | | | |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知向量
(1)若分別表示將一枚質地均勻的骰子先后拋擲兩次時第一次、第二次正面朝上出現的點數,求滿足的概率.
(2)若在連續(xù)區(qū)間[1,6]上取值,求滿足的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4。
(Ⅰ)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機取一個球,該球的編號為,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為,求+2的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.把符合條件的1000名志愿者按年齡分組:第1組[20,25)、第2組[25,30)、第3組[30,35)、第4組[35,40)、第5組[40,45],得到的頻率分布直方圖如圖所示:
(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者參加廣場的宣傳活動,應從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在這12名志愿者中隨機抽取3名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率;
(3)在(2)的條件下,若ξ表示抽出的3名志愿者中第3組的人數,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現從某中學隨機抽取16名學生,經校醫(yī)用對數視力表檢査得到每個學生的視力狀況的莖葉圖(以小數點前的一位數字為莖,小數點后的一位數字為葉)如下:
(I )若視力測試結果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(II)以這16人的樣本數據來估計整個學校的總體數據,若從該校(人數很多)任選3人,記表示抽到“好視力”學生的人數,求的分布列及數學期望,據此估計該校高中學生(共有5600人)好視力的人數
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
小波以游戲方式決定參加學校合唱團還是參加學校排球隊.游戲規(guī)則為:以O為起點,再從(如圖)這8個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數量積為.若就參加學校合唱團,否則就參加學校排球隊.
(I)求小波參加學校合唱團的概率;
(II)求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同.
(1)求甲以4比1獲勝的概率;
(2)求乙獲勝且比賽局數多于5局的概率;
(3)求比賽局數的分布列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com