4.若存在X滿足不等式|X-4|+|X-3|<a,則a的取值范圍是( 。
A.a≥1B.a>1C.a≤1D.a<1

分析 存在實數(shù)x滿足不等式|x-4|+|x-3|<a,?a>(|x-4|+|x-3|)min,求出即可.

解答 解:∵存在實數(shù)x滿足不等式|x-4|+|x-3|<a,
∴a>(|x-4|+|x-3|)min=|x-4-(x-3)|=1,
∴實數(shù)a的取值范圍是(1,+∞).
故選:B.

點評 本題考查了存在性問題的等價轉(zhuǎn)化、含絕對值的最小值問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$C_n^{14}=C_n^4$,則n=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.將長、寬分別為4πcm、2cm的矩形做為圓柱的側(cè)面卷成一個圓柱(以較長邊為底面周長),則此圓柱的全面積為16πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an},滿足a4+a8=8,則此數(shù)列的前11項的和S11=( 。
A.11B.22C.33D.44

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的漸近線方程是y=±$\sqrt{2}$x,則雙曲線的離心率等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ex-ax-2
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時,$\frac{k-x}{x+1}$f'(x)<1恒成立,其中f'(x)為f(x)的導(dǎo)函數(shù),求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=$\frac{{e}^{x}}{x}$在(0,2)上的最小值是(  )
A.$\frac{e}{2}$B.$\frac{\sqrt{e}}{2e}$C.$\frac{2e}{3}$D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,已知a,b,c分別是角A,B,C的對邊,且滿足$\frac{2b+c}{a}$=-$\frac{cosC}{cosA}$.
(Ⅰ)求A的大;
(Ⅱ)若△ABC的面積為2$\sqrt{3}$,其外接圓半徑R=$\frac{2\sqrt{21}}{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

同步練習(xí)冊答案