15.用反證法證明命題:“已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1”時(shí),其中假設(shè)正確的是( 。
A.方程x2+ax+b=0的兩根的絕對值中只有一個(gè)小于1
B.方程x2+ax+b=0的兩根的絕對值至少有一個(gè)小于1
C.方程x2+ax+b=0的兩根的絕對值都大于或等于1
D.方程x2+ax+b=0的兩根的絕對值至少有一個(gè)大于或等于1

分析 結(jié)論的否定即為要假設(shè)的結(jié)論.

解答 解:命題“方程x2+ax+b=0的兩根的絕對值都小于1”的否定為:
“方程x2+ax+b=0的兩根的絕對值至少有1個(gè)不小于1”,
故選D.

點(diǎn)評 本題考查了反證法,命題的否定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若數(shù)列{$\frac{1}{n(n+1)}$}的前n項(xiàng)和為Sn,若Sn•Sn+1=$\frac{3}{4}$,則正整數(shù)n的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在區(qū)間(0,1)上隨機(jī)取兩個(gè)實(shí)數(shù)m,n,則關(guān)于x的一元二次方程${x^2}-2\sqrt{m}x+2n=0$有實(shí)數(shù)根的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標(biāo)系內(nèi),區(qū)域M滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤1\end{array}$區(qū)域N滿足$\left\{\begin{array}{l}0≤x≤π\(zhòng)\ 0≤y≤sinx\end{array}$則向區(qū)域M內(nèi)投一點(diǎn),落在區(qū)域N內(nèi)的概率是( 。
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx,函數(shù)g(x)=$\frac{1}{x}$.
(Ⅰ)證明:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上為增函數(shù).
(Ⅱ)用反證法證明:f(x)=2的解是唯一的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知A(4,1,3)、B(2,-5,1),C為線段AB上的一點(diǎn),且滿足$\overrightarrow{AB}$=2$\overrightarrow{AC}$,則點(diǎn)C的坐標(biāo)為(3,-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.函數(shù)φ(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若把函數(shù)φ(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大到原來的2倍,得到函數(shù)f(x).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)y=f(x+φ′)(0<φ′<$\frac{π}{2}$)是奇函數(shù),求函數(shù)g(x)=cos(2x-φ′)在[0,2π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊成為會員,對會員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次數(shù)第1次第2次第3次第4次≥5次
收費(fèi)比例10.950.900.850.80
該公司從注冊的會員中,隨機(jī)抽取了100位統(tǒng)計(jì)他們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:
消費(fèi)次數(shù)1次2次3次4次5次
頻數(shù)60201055
假設(shè)汽車美容一次,公司成本為150元.根據(jù)所給數(shù)據(jù),解答下列問題:
(Ⅰ)估計(jì)該公司一位會員至少消費(fèi)兩次的概率;
(Ⅱ)某會員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤;
(Ⅲ)假設(shè)每個(gè)會員最多消費(fèi)5次,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,設(shè)該公司為一位會員服務(wù)的平均利潤為X元,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案