【題目】如圖所示,由一塊扇形空地,其中,米,計劃在此扇形空地區(qū)域為學生建燈光籃球運動場,區(qū)域內(nèi)安裝一批照明燈,點、選在線段上(點、分別不與點、重合),且.
(1)若點在距離點米處,求點、之間的距離;
(2)為了使運動場地區(qū)域最大化,要求面積盡可能的小,記,請用表示的面積,并求的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上一點,經(jīng)過點的直線與拋物線交于、兩點(不同于點),直線、分別交直線于點、.
(1)求拋物線方程及其焦點坐標;
(2)求證:以為直徑的圓恰好經(jīng)過原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左右焦點分別為,,實軸長為6,漸近線方程為,動點在雙曲線左支上,點為圓上一點,則的最小值為
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點,直線與平面所成角的正弦值為,點在上移動.
(Ⅰ)證明:無論點在上如何移動,都有平面平面;
(Ⅱ)求點恰為的中點時,二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的二項式的展開式的二項式系數(shù)之和為1024,常數(shù)項為180.
(1)求和的值;
(2)求展開式中的無理項.(不需求項的表達式,指出無理項的序號即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com