【題目】如圖,在正方體中,是的中點.
(1)求證:平面;
(2)求證:平面平面.(只需在下面橫線上填寫給出的如下結(jié)論的序號:①平面,②平面,③,④,⑤)
證明:(1)設(shè),連接.因為底面是正方形,所以為的中點,又是的中點,所以_________.因為平面,____________,所以平面.
(2)因為平面平面,所以___________,因為底面是正方形,所以_______,又因為平面平面,所以_________.又平面,所以平面平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解本市居民的生活成本,甲乙丙三名同學(xué)利用假期分別對三個社區(qū)進行了“家庭每月日常消費額”的調(diào)查.他們將調(diào)查所得的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲乙丙所調(diào)查數(shù)據(jù)的標準差分別為,,,則它們的大小關(guān)系為__________.
(甲)
(乙)
(丙)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個說法中:
①與表示同一函數(shù);
②已知函數(shù)的定義域為,則的定義域為;
③不等式對于恒成立,則的取值范圍是;
④對于集合,,
若,則的取值范圍,其中正確說法的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)對排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)......則第60個整數(shù)對是( )
A.(5,7)B.(11,5)C.(7,5)D.(5,11)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:(2+m)x+(1﹣2m)y+4﹣3m=0.
(1)求證:不論m為何實數(shù),直線l恒過一定點M;
(2)過定點M作一條直線l1,使夾在兩坐標軸之間的線段被M點平分,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)在政府“精準扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入.政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益、養(yǎng)雞的收益與投入(單位:萬元)滿足.設(shè)甲合作社的投入為(單位:萬元),兩個合作社的總收益為(單位:萬元).
(1)若兩個合作社的投入相等,求總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R;命題q:函數(shù)f(x)=x2﹣2ax﹣1在(﹣∞,﹣1]上單調(diào)遞減.
(1)若命題“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍;
(2)若關(guān)于x的不等式(x﹣m)(x﹣m+5)<0(m∈R)的解集為M;命題p為真命題時,a的取值集合為N.當(dāng)M∪N=M時,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com