11.已知兩點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”.給出下列直線:①y=x+1;②y=2x+1;③$y=\frac{4}{3}x$;④y=2,其中為“B型直線”的是(  )
A.①②B.①③C.①④D.③④

分析 首先根據(jù)題意,結(jié)合雙曲線的定義,可得滿足|PM|-|PN|=6的點的軌跡是以M、N為焦點的雙曲線的右支;進而可得其方程,若該直線為“B型直線”,則這條直線必與雙曲線的右支相交,依次分析4條直線與雙曲線的右支是否相交,可得答案.

解答 解:根據(jù)題意,滿足|PM|-|PN|=6的點的軌跡是以M、N為焦點的雙曲線的右支;
則其中焦點坐標為M(-5,0)和N(5,0),即c=5,a=3,
可得b=4;
故雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1,(x>0)
依題意,若該直線為“B型直線”,則這條直線必與雙曲線的右支相交,
進而分析可得:①y=x+1;④y=2與其相交,
②y=2x+1;③$y=\frac{4}{3}x$與雙曲線的右支沒有交點;
故選C.

點評 本題考查雙曲線與直線的位置關(guān)系,要掌握判斷雙曲線與直線相交,交點位置的判定方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)a>1,b>1,若a+b=4,則(a-1)(b-1)的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx.
(1)若F(x)=$\frac{2f(x)}{x}$,求F(x)的單調(diào)區(qū)間;
(2)若G(x)=[f(x)]2-kx在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=1+ln(x+1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)當x>0時,f(x)>$\frac{kx}{x+1}$恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若不等式x2+mx+$\frac{m}{2}$>0恒成立,則實數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知命題p,q,“命題p∨q真”是“命題p∧q真”的( 。l件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=-x2+alnx(a∈R).
(Ⅰ)當a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-2x+2x2,討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(Ⅰ)設(shè)角$α=\frac{π}{6}$,求$\frac{{2sin({π+α})cos({π-α})-cos({π+α})}}{{1+{{sin}^2}α+sin({π-α})-{{cos}^2}({π+α})}}$的值;
(Ⅱ)已知$\frac{tanα}{tanα-6}=-1$,求值:$\frac{2cosα-3sinα}{3cosα+4sinα}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的頂點到漸近線的距離為( 。
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案