【題目】已知拋物線,過點作斜率為的直線與拋物線交于不同的兩點,.
(1)求的取值范圍;
(2)若為直角三角形,且,求的值.
【答案】(1)或 (2)
【解析】
(1)設(shè)直線的方程,聯(lián)立直線和拋物線的方程得,解即可;
(2)結(jié)合韋達定理,計算的坐標表示即可.
解:(1)由題意,設(shè)直線方程為,
聯(lián)立方程組,消去得,
要使直線與拋物線交于不同的兩點,,則,
即,
解得或,
綜上,的取值范圍為或.
(2)設(shè),,由(1)可知,是的兩個根,
則,,
法一:因為為直角三角形,且,
所以,即,
因為
,
所以有,
解得或,
當(dāng)時,直線過原點,,,不能夠構(gòu)成三角形,
所以.
法二:因為為直角三角形,且,
所以,即,
因為,所以,
因為,所以,
即,解得,
此時滿足(1)中的取值范圍,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)棱底面,為棱的中點,.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材曾有介紹:圓上的點處的切線方程為.我們將其結(jié)論推廣:橢圓上的點處的切線方程為,在解本題時可以直接應(yīng)用.已知,直線與橢圓有且只有一個公共點.
(1)求的值
(2)設(shè)為坐標原點,過橢圓上的兩點分別作該橢圓的兩條切線,且與交于點.當(dāng)變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,且橢圓的一個焦點在圓上.
(1)求橢圓的方程;
(2)已知橢圓的焦距小于,過橢圓的左焦點的直線與橢圓相交于兩點,若,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將甲、乙、丙、丁四個人安排到座位號分別是的四個座位上,他們分別有以下要求,
甲:我不坐座位號為和的座位;
乙:我不坐座位號為和的座位;
丙:我的要求和乙一樣;
丁:如果乙不坐座位號為的座位,我就不坐座位號為的座位.
那么坐在座位號為的座位上的是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程是
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)直線與曲線相交于兩點,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】出租車幾何學(xué)是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣,對于直角坐標系內(nèi)任意兩點、定義它們之間的一種“距離”(“直角距離”):,請解決以下問題:
(1)求線段(,)上一點到原點的“距離”;
(2)求所有到定點的“距離”均為2的動點圍成的圖形的周長;
(3)在“歐式幾何學(xué)”中有如下三個與“距離”有關(guān)的正確結(jié)論:
①平面上任意三點A,B,C,;
②平面上不在一直線上任意三點A,B,C,若,則是以為直角三角形
③平面上存在兩個不同的定點A,B,若動點P滿足,則動點P的軌跡是的垂直平分線
上述結(jié)論對于“出租車幾何學(xué)”中的直角距離是否還正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|2x-1|+|2x-2|<x+3的解集是A.
(Ⅰ)求集合A;
(Ⅱ)設(shè)x,y∈A,對任意a∈R,求證:xy(||x+a|-|y+a||)<x2+y2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com