【題目】已知橢圓的短軸長為,且橢圓的一個焦點在圓上.

(1)求橢圓的方程;

(2)已知橢圓的焦距小于,過橢圓的左焦點的直線與橢圓相交于兩點,若,求

【答案】(1).(2)

【解析】

(1)由題意可知:b=1,由焦點在圓上,可求得c,進而求得a,即可求得橢圓方程;

(2設出直線l的方程,代入橢圓,得到A、B的縱坐標的關系,利用向量轉化的縱坐標的關系,求得直線方程,利用弦長公式可得所求.

(1)因為橢圓的短軸長為,所以,則.

軸的交點為,,

從而,

故橢圓的方程為.

(2)設,由,得.

因為橢圓的焦距小于,所以橢圓的方程為

當直線的斜率為0時,AF=,BF=,不滿足題意,

所以將的方程設為,代入橢圓方程,消去,得,

所以,

代入,得.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調性;

(2)若的極值點,且曲線在兩點 處的切線互相平行,這兩條切線在y軸上的截距分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),若,,使得不等式成立,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上任意一點到其焦點的距離的最小值為1.,為拋物線上的兩動點(、不重合且均異于原點),為坐標原點,直線、的傾斜角分別為,.

1)求拋物線方程;

2)若,求證直線過定點;

3)若為定值),探求直線是否過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 ,長軸的右端點與拋物線 的焦點重合,且橢圓的離心率是

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過作直線交拋物線 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過點作斜率為的直線與拋物線交于不同的兩點,

1)求的取值范圍;

2)若為直角三角形,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程是

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

(Ⅱ)設直線與曲線相交于兩點,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,且橢圓C上恰有三點在集合.

1)求橢圓C的方程;

2)若點O為坐標原點,直線AB與橢圓交于A、B兩點,且滿足,試探究:點O到直線AB的距離是否為定值.如果是,請求出定值:如果不是,請明說理由.

3)在(2)的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線與橢圓有相同的焦點.

求雙曲線的方程;

為中點作雙曲線的一條弦,求弦所在直線的方程.

查看答案和解析>>

同步練習冊答案