1.在中,,.
(1)求角;
(2)設(shè),求的面積.
科目:高中數(shù)學(xué) 來源: 題型:
1(本小題滿分12分)
2008年為山東素質(zhì)教育年,為響應(yīng)素質(zhì)教育的實施,某中學(xué)號召學(xué)生在放假期間至少參加一次社會實踐活動(以下簡稱活動).現(xiàn)統(tǒng)計了該校100名學(xué)生參加活動的情況,他們參加活動的次數(shù)統(tǒng)計如圖所示.
(1)求這些學(xué)生參加活動的人均次數(shù);
(2)從這些學(xué)生中任選兩名學(xué)生,求他們參加活動次數(shù)恰好相等的概率;
(3)從這些學(xué)生中任選兩名學(xué)生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省山一中高三熱身練文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
在平面直角坐標(biāo)系中,已知向量(),,動點的軌跡為.
(1)求軌跡的方程,并說明該方程表示的曲線的形狀;
(2)當(dāng)時,過點(0,1),作軌跡T的兩條互相垂直的弦、,設(shè)、 的中點分別為、,試判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省海口市高三高考調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
某市為了對學(xué)生的數(shù)理(數(shù)學(xué)與物理)學(xué)習(xí)能力進(jìn)行分析,從10000名學(xué)生中隨機抽出100位學(xué)生的數(shù)理綜合學(xué)習(xí)能力等級分?jǐn)?shù)(6分制)作為樣本,分?jǐn)?shù)頻數(shù)分布如下表:
等級得分 |
||||||
人數(shù) |
3 |
17 |
30 |
30 |
17 |
3 |
(Ⅰ)如果以能力等級分?jǐn)?shù)大于4分作為良好的標(biāo)準(zhǔn),從樣本中任意抽。裁麑W(xué)生,求恰有1名學(xué)生為良好的概率;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:
(ⅰ)據(jù)此,計算這100名學(xué)生數(shù)理學(xué)習(xí)能力等級分?jǐn)?shù)的期望及標(biāo)準(zhǔn)差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學(xué)生中數(shù)理學(xué)習(xí)能力等級在范圍內(nèi)的人數(shù) .
(Ⅲ)從這10000名學(xué)生中任意抽取5名同學(xué),
他們數(shù)學(xué)與物理單科學(xué)習(xí)能力等級分
數(shù)如下表:
(ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(附參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江哈爾濱市高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱柱中,平面,底面是邊長為的正方形,側(cè)棱.
。ǎ保┣笕忮F的體積;
。ǎ玻┣笾本與平面所成角的正弦值;
。ǎ常┤衾上存在一點,使得,當(dāng)二面角的大小為時,求實數(shù)的值.
【解析】(1)在中,
. (3’)
(2)以點D為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則
(4’)
,設(shè)平面的法向量為,
由得, (5’)
則,
. (7’)
(3)
設(shè)平面的法向量為,由得, (10’)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com