分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期.
(Ⅱ)根據(jù)函數(shù)y=f(2x-$\frac{π}{6}$)求出解析式,x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值,即得到f(x)的值域.
解答 解:函數(shù)f(x)=cosx-8cos4$\frac{x}{4}$.
化簡可得:f(x)=cosx-8(cos2$\frac{x}{4}$)2=cosx-8($\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}$)2=-2cos$\frac{x}{2}$-3
(Ⅰ)∴該函數(shù)的最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π;
(Ⅱ)由函數(shù)y=f(2x-$\frac{π}{6}$)=-2cos(x-$\frac{π}{12}$)-3.
x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上時,則x-$\frac{π}{12}$∈[$-\frac{π}{4}$,$\frac{π}{3}$]
當2x-$\frac{π}{6}$=$\frac{π}{3}$,函數(shù)y取得最大值為-4.
當2x-$\frac{π}{6}$=0,函數(shù)y取得最小值為-5.
∴函數(shù)y=f(2x-$\frac{π}{6}$)在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域為[-5,-4].
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>32 | B. | k≥32 | C. | k>16 | D. | k≥16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2i | B. | -2i | C. | 2+i | D. | -2+i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com