10.如果復(fù)數(shù)$\frac{2-ai}{1+i}$(其中i為虛數(shù)單位,a∈R)為純虛數(shù),則a=( 。
A.-2B.0C.1D.2

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)與共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)$\frac{2-ai}{1+i}$=$\frac{(2-ai)(1-i)}{(1+i)(1-i)}$=$\frac{2-a}{2}$-$\frac{2+a}{2}$i為純虛數(shù),
∴$\frac{2-a}{2}$=0,-$\frac{2+a}{2}$≠0,
解得a=2.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)與共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,則$\frac{y}{x+2}$的最大值為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$cosα-sinα=\frac{{\sqrt{2}}}{4}$,則sin2α的值為( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{7}{8}$D.$-\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=cosx-8cos4$\frac{x}{4}$.
(Ⅰ)求該函數(shù)的最小正周期;
(Ⅱ)求函數(shù)y=f(2x-$\frac{π}{6}$)在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosC+(2a+c)cosB=0.
(I)求角B的值;
(II)若b=1,$cosA+cosC=\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=3cosx-4sinx,x∈[0,π],則f(x)的值域?yàn)閇-5,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點(diǎn)為F,點(diǎn)C是橢圓與x軸負(fù)半軸的交點(diǎn),點(diǎn)D是橢圓與y軸正半軸的交點(diǎn),直線x=m與橢圓相交于A,B兩點(diǎn),若△FAB的周長最大時,CD∥OA(O為坐標(biāo)原點(diǎn)),則該橢圓的離心率為(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知${x_0}=\frac{π}{3}$是函數(shù)f(x)=msinωx-cosωx(m>0)的一條對稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)角A,B,C為△ABC的三個內(nèi)角,對應(yīng)邊分別為a,b,c,若f(B)=2,$b=\sqrt{3}$,求$a-\frac{c}{2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合M={x|2x-1<1,x∈R},N={x|log2x<1,x∈R},則M∩N等于( 。
A.[3,4)B.(2,3]C.(1,2)D.(0,1)

查看答案和解析>>

同步練習(xí)冊答案