【題目】收入是衡量一個地區(qū)經(jīng)濟發(fā)展水平的重要標志之一,影響收入的因素有很多,為分析學(xué)歷對收入的作用,某地區(qū)調(diào)查機構(gòu)欲對本地區(qū)進行了此項調(diào)查.

(1)你認為應(yīng)采用何種抽樣方法進行調(diào)查?

(2)經(jīng)調(diào)查得到本科學(xué)歷月均收入條形圖如圖,試估算本科學(xué)歷月均收入的值?

(3)設(shè)學(xué)年為,令,月均收入為,已知調(diào)查機構(gòu)調(diào)查結(jié)果如下表

學(xué)歷 (年)

小學(xué)

初中

高中

本科

碩士生

博士生

6

9

12

16

19

22

2.0

2.7

3.7

5.8

7.8

2210

2410

2910

6960

從散點圖中可看出的關(guān)系可以近似看成是一次函數(shù)圖像. 若回歸直線方程為,試預(yù)測博士生的平均月收入.

【答案】(1)應(yīng)采用分層抽樣;(2)元;(3)元.

【解析】試題分析:(1應(yīng)采用分層抽樣;(2);(3回歸方程經(jīng)過中心點, ,所以,又因為當時, ,所以元。

試題解析:

(1)應(yīng)采用分層抽樣 .

2,

3,

,

由回歸方程經(jīng)過中心點,

,

又因為當時, ,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積為

1)求橢圓的方程;

2)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C.

1)若直線過定點,且與圓C相切,求方程;

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,.

1求數(shù)列的通項公式;

2設(shè),記數(shù)列的前項和.若對 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點在坐標原點,焦點軸正半軸上,過點的直線交拋物線于兩點,線段的長是, 的中點到軸的距離是.

(1)求拋物線的標準方程;

2過點作斜率為的直線與拋物線交于兩點,直線交拋物線于

求證 軸為的角平分線;

②若交拋物線于,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個條件的有窮數(shù)列, , 期待數(shù)列

;

.

)分別寫出一個單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓C: =1a>b>0過點P(1, ).離心率為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A,B兩點.

①若直線l過橢圓C的右焦點,記△ABP三條邊所在直線的斜率的乘積為t.

t的最大值;

②若直線l的斜率為,試探究OA2+ OB2是否為定值,若是定值,則求出此

定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知矩形的長為2,寬為1,.邊分別在.軸的正半軸上,點與坐標原點重合(如圖所示)。將矩形折疊,使點落在線段上。

(1)若折痕所在直線的斜率為,試求折痕所在直線的方程;

(2)當時,求折痕長的最大值;

(3)當時,折痕為線段,設(shè),試求的最大值。

查看答案和解析>>

同步練習(xí)冊答案