9.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,則數(shù)列{$\frac{1}{{a}_{n}}$}的前4項(xiàng)和為(  )
A.$\frac{5}{16}$或$\frac{11}{16}$B.$\frac{5}{16}$或$\frac{7}{16}$C.$\frac{5}{16}$或$\frac{15}{16}$D.$\frac{3}{16}$或$\frac{7}{16}$

分析 利用等比數(shù)列的通項(xiàng)公式可得公比q,再利用等比數(shù)列的前n項(xiàng)和公式即可得出數(shù)列{$\frac{1}{{a}_{n}}$}的前4項(xiàng)和.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
則由a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,得
$\frac{\frac{2×(1-{q}^{6})}{1-q}}{\frac{2×(1-{q}^{2})}{1-q}}$=$\frac{1-{q}^{6}}{1-{q}^{2}}$=21,
整理得q4+q2-20=0,
解得q=2或q=-2,
∴${a}_{n}={2}^{n}$或${a}_{n}=2•(-2)^{n-1}$.
當(dāng)${a}_{n}={2}^{n}$時(shí),數(shù)列{$\frac{1}{{a}_{n}}$}的前4項(xiàng)和為:$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}$,
當(dāng)${a}_{n}=2•(-2)^{n-1}$時(shí),數(shù)列{$\frac{1}{{a}_{n}}$}的前4項(xiàng)和為:$\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}$=$\frac{5}{16}$.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的前4項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.由直線x=$\frac{1}{3}$,x=3,曲線y=$\frac{1}{x}$及x軸所圍圖形的面積是2ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)為和Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{({a_n}-5)•{2^{a_n}}}\right\}$的前n項(xiàng)和Tn
(3)設(shè)n∈N*,f(n)=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$問(wèn)是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知復(fù)數(shù)$z=\frac{16i}{{\sqrt{7}+3i}}$,則下列說(shuō)法錯(cuò)誤的是( 。
A.復(fù)數(shù)z的實(shí)部為3B.復(fù)數(shù)z的虛部為$\sqrt{7}$
C.復(fù)數(shù)z的模為4D.復(fù)數(shù)z的共軛復(fù)數(shù)為$-3+\sqrt{7}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等比數(shù)列{an}的前n項(xiàng)積為Tn,若log2a3+log2a7=2,則T9的值為( 。
A.±512B.512C.±1024D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,已知圓M過(guò)坐標(biāo)原點(diǎn)O且圓心在曲線$y=\frac{{\sqrt{3}}}{x}$上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB面積為定值;
(2)直線$l:y=-\frac{{\sqrt{3}}}{3}x+4$與圓M交于不同的兩點(diǎn)C,D,|OC|=|OD|,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集U=R,集合A={x|-1≤x≤3},集合B{x|2x>4},則A∩(∁UB)=( 。
A.{x|1≤x≤2}B.{x|-1≤x≤2}C.{x|0≤x≤2}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.來(lái)自某校一班和二班的共計(jì)9名學(xué)生志愿服務(wù)者被隨機(jī)平均分配到運(yùn)送礦泉水、清掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有一名一班志愿者的概率是$\frac{20}{21}$.
(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(Ⅱ)設(shè)隨機(jī)變量X為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求X分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若函數(shù)f(x)=x2-2mx+2m+1,當(dāng)x∈[0,1]時(shí),f(x)>0,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案